初中数学说课稿

时间:2024-06-25 09:00:19 初中说课稿 我要投稿

初中数学说课稿(常用15篇)

  作为一名教师,通常需要用到说课稿来辅助教学,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。说课稿应该怎么写呢?以下是小编精心整理的初中数学说课稿,仅供参考,欢迎大家阅读。

初中数学说课稿(常用15篇)

初中数学说课稿1

  一、课题名称:

  7.5多项式的乘法。

  二、教学目的:

  ⒈会叙述多项式相乘的法则.

  ⒉知道多项式相乘的法则是两次运用单项式与多项式相乘的法则得到的

  ⒊能按多项式乘法步骤进行较简单的多项式乘法的运算.

  三、重点:多项式的乘法法则及其应用;

  难点:灵活运用多项的乘法法则进行计算.

  四、讲授新课:

  ㈠复习

  ⒈单项式与多项式相乘的法则

  ⑴用文字叙述:

  ⑵用字母表示:

  ⑶数学模型(矩形的面积和):

  ⒉注意:多项式是单项式的代数和,各单项式应包括前面的符号。

  ㈡提出问题

  问题Ⅰ(简单)尝试解决问题。

  计算:

  方法一、原式==15

  方法二、原式===9+6=15

  方法三、原式=

  =3+6+2+4=15

  问题Ⅱ

  =am+an+bm+bn

  尝试的依据:效果相同。

  ㈢、归纳、小结(多项式的乘法法则)

  ⑴用字母表示:

  ⑵用文字叙述:一般地,多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的.第一项,再把所得的积相加.

  ⑶数学模型(矩形的面积和):

  ⑷对公式的整体上理解:

  ①转化:多项式的乘法,可看作两次运用单项式与多项式相乘的法到.

  ②积的项数:(在未合并同类项之前其项数)

  是这两个多项式的项数的积。

  ㈣巩固、提高

  例1计算:

  ⑴⑵⑶

  解:

  注意:

  ⒈积中各项的符号(多项式是单项式的和,每一项都包括前面的符号).

  ⒉最后结果应对同类项进行合并.

初中数学说课稿2

  一、说教材

  1、设计理念

  我遵循:“人人学有价值的数学,人人都能获得必需的数学;不同的人在数学上得到不同的发展”这一基本理念,向学生提供有价值的数学学习内容。让学生在日常生活曾接触、感悟到的大量生动事物中,领悟到在生活中处处有数学,处处用数学。通过动手实践、自主探索、合作交流等活动,有效地引导学生主动地、富有个性地学习,从而构建对平移和旋转的认识。最终实现知识与技能、过程与方法、情感度与价值观三维目标的有机整合。

  2、教材所处的地位和作用

  新教材中,对儿童空间知觉的发展,是从静态的前、后、左、右进一步感悟动态的平移和旋转现象。中年级引入这个内容,用大量感性、直观的生活实例,使学生掌握平移、旋转的运动规律及平移方法,为儿童更好地认识和描述生活空间,提供了重要的认知工具,并为后继学习平行线、角的分类,推导三角形、平行四边形、梯形面积计算公式等内容打好基础。

  3、教学目标

  (1)学生通过观察、操作、分析、归纳等活动:

  初步感知平移、旋转现象;掌握平移和旋转的基本规律;按要求在方格纸上画出简单的平移后的图形;发展学生的空间观念和几何思维。

  (2)学生在经历对平移和旋转现象的探索过程中:

  体验平移和旋转与现实世界的联系;感受变换的数学思想;丰富问题解决的技能;受到数学美的熏陶;提高学习数学的兴趣和合作交流意识。

  4、教学重点、难点

  重点:掌握平移和旋转的基本规律,能区分平移与旋转现象。

  难点:体会物体向不同方向平移的现象;能在方格纸上画出平移后的图形。

  5、教具、学具准备:多媒体课件、图片等。

  二、教法

  “数学教学是数学活动的教学,是师生之间、学生之间互动与共同发展的过程”。根据《课程标准》与建构主义理论,我采用了:师生互动教学法和活动教学法。教师是学习的组织者、引导者、合作者,为了充分调动学生的主动性与积极性,我适时而有针对性地创设一个良好的心理环境、思考环境和人际交流的环境,搭建起师生积极互动的平台。让学生对生活中的平移与旋转现象,进行观察、比较、操作、交流等多种形式的活动,发现其规律。经历一个从具体到抽象的“数学化”的过程。

  三、学法

  “有效教学”的核心是“学生参与”。学习活动不是单纯地掌握书本知识,更重要的是,培养学生立获取知识和运用知识的能力。因此,在学习过程中主要体现了:通过学生观察比较、动手操作、自主探索、合作交流等学习方法,让数学走进学生的生活。

  四、教学过程

  (一)创设情境、揭示规律

  1、观察比较、建立模型

  观察观缆车、弹射塔、转盘、空中飞船等,建立平移、旋转的模型。

  [设计意图:利用多媒体直观动态,能反复再现的优势,在学生大脑中留下具体的.、动态的印象。孩子们根据物体的运动特点进行分类,在对比中感悟、理解,从而由具体现象抽象出平移和旋转的模型。]

  2、联系生活,加深理解

  (1)肢体表演游戏

  [设计意图:用严谨的数学语言描述平移和旋转这两种运动象,对三年级学生会有一定的困难的,因此,用肢体语言来感知和表述这两种运动特点,用动作的准确性来弥补语言描述的不足,从而获得进一步的感性认识]。

  (2)学生举例

  [设计意图:通过交流活动,孩子们体验到生活中处处有数学,感受数学与现实生活的息息相关。老师也从中反馈到他们对这个内容把握情况的信息,继而进入下面的环节。]

  (二)动手操作、突破难点

  本课的难点是:

  体会物体向不同方向平移的现象;

  能在方格纸上画出平移后的图形。

  1、设疑引思,自主探究

  比较:谁经过的路长一些?

  [设计意图:三年级学生受知识经验和思维特点的局限,容易把一个图形平移的距离误解为两个图形间的距离。通过这样一个比较位置变化的参与性活动,他们动手操作,检验或修正自己的想法,数物体向某一方向平移的格数这一难点,就在孩子们的积极活动中迎刃而解了。]

  2、观察推理、拓展思路

  小老鼠吃苹果。

  [设计意图:孩子们在激励评价中,思路得以开拓,既巩固了平移的方法,又体验到物体向不同方向平移的现象,培养其求异思维,尝试接纳并欣赏他人。]

  3、水到渠成、学会画图

  画平移轨迹图。

  [设计意图:通过三个层次的活动,掌握了方法,突破了难点。]

  (三)活用新知,巩固升华

  1、基本练习

  (1)判断下面物体的运动,哪些是平移,哪些是旋转?

  (2)移一移,说一说

  (3)涂一涂,画一画

  [设计意图:这样设计,是想让学生沿知识构建的顺序,巩固平移和旋转的规律,掌握平移的方法。]

  2、提高练习

  [设计意图:从这道练习中,我们看到了,“小课堂大社会”。体现了数学源于生活,又作用于生活。]

  3、发展练习

  [设计意图:通过这个活动,孩子们体会到变换的数学思想,在感受数学美的同时,体会数学的价值。]

  四、回顾总结、反思评价

  [设计意图:这样多层面地让学生参与总结,既达到对新知的回顾反思,又让其享受自我、伙伴及老师评价的喜悦。]

  五、课后小实践

  以小组为单位,观察日常生活中发生的旋转、平移现象,把它画下来或拍下来,加上文字说明,放到班级公共邮箱互相交流。

  一、说教材

  平移与旋转是人教版二年级数学下册第三单元的内容,平移与旋转这两种现象是生活中比较常见的几何现象。课程标准不要求对这两个概念进行定义,更不需要学生去背诵结论性语句,只要求学生紧密联系生活实际去感知这些现象。

  二、说学生

  二年级学生在生活中见到很多平移和旋转的运动现象,在他们的头脑中已有比较感性的平移和旋转意识,受生活经验的限制,对于好多现象的判断还有些模糊,更无法想象,不能透过现象用数学的眼光来抓住运动方式的本质。

  三、说目标

  知士标:

  1、通过生活事例,使学生初步了解图形的平移变换和旋转变换,结合学生的生活实际,初步感知平移和旋转现象。

  2、通过动手操作,使学生会在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形。

  技能目标:使学生能正确判断图形的这两种变换数学思考:在认识平移和旋转现象中,建立初步的空间观念,发展形象思维;初步渗透变换的数学思想方法。

  情感目标:能积极参与对平移和旋转现象的探究活动,感受数学与现实生活的密切联系,培养对身边平移和旋转有关的某些事物的好奇心。

  四、教学重难点

  重点:能判断生活中的平移与旋转现象。

  难点:

  1、对没有旋转到一周的物体的判断,如荡秋千等。

  2、建立学生的空间观点。

  五、教学用具

  教学用具:多媒体课件、游乐园主题图及各种游乐项目运动现象的部分图等。

  学具:学生学环境中的书、文具盒、桌子、凳子等。

  六、教学方式与方法

  1、探究式师生互动学习方式

  2、观察法与分析法七、说教学过程本节课安排了六个层次,分别是玩一玩、学一学、说一说、画一画、做一做、练一练:

  (一)玩一玩感知平移与旋转运动现象

  我是这样引入的:今天老师和同学们一起到公园去玩一玩,(出示主题图),哇,你发现了什么?(通过教师夸张的语言将学生吸引住,然后出示多媒体:旋转椅、缆车、摩天轮、跷跷板、滑滑梯等。在认识的基础上让学生观察它们是怎样在动,并让学生动起手来比一比,根据这些物体的运动进行分类,一类旋转,一类平移,初步感知旋转和平移现象。)

  (二)学一学分析平移和旋转现象的特征(课件出示旋转动画和平移动画)让学生说说什么是平移?什么是旋转?让学生通过实物的再次观察抽象出:旋转就是围绕着一个中心转动,运动方向发生改变。平移就是直直地移动,方向不发生改变。得出旋转与平移这两种现象的本质。

  (三)说一说例举生活中的平移和旋转现象,找出旋转与平移的特征以后,再让学生列举在生活中见到的旋转与平移现象,在说的过程中教师要指导学生对现象描述的准确性和语言表达的完整性。例如:电风扇叶子的转动是旋转现象,学生很可能说成风扇叶子是旋转现象等等。

  列举生活中的旋转与平移现象以后,再让学生眼睛闭上,边想边用手做一做,什么是旋转?什么是平移?

  (四)画一画体验在方格纸中画出平移后的物体本环节主要让学生在方格纸上画出沿水平方向、竖直方向平移后的图形。本知识点是本节课的重点,通过多媒体呈现"蚂蚁搬家"游戏来互动学习突出重点,让学生观察分析得出:要看图形平移了几格,只要先找出一组对应点,再数一数对应点中间有几格,对应点之间的格数就是图形平移的格数。

  (五)做一做在做中体验平移和旋转现象

  让学生利用桌子、凳子、椅子、学具或自己的身体等做一做旋转与平移现象。在做的过程中,教师注意观察,将做的好的点到前面。让他们表演并说说自己做的是哪种运动现象,下面的学生判断正确与错误,并说说为什么?

  等学生做完以后,教师用一根线栓住一只粉笔旋转,让学生判断,然后停下,不做完一周,做荡秋千状,又问学生,这是什么现象?为什么?紧接着推门问:门的运动属于什么现象?为什么?教师在学生回答的基础上总结:象刚才粉笔运动和门的运动,虽然没有做到一周,但是仍然是围绕中心运动,属于旋转运动。然后让学生列举生活中这样旋转的现象。在这里通过老师的做很自然清晰地突破了难点。

  (六)练一练解决生活中的平移和旋转问题在前面学习的基础上,再引导学生完成课后练习,第一题让学生观察之后便回答,然后核对。第二题让学生立完成,然后指生说说为什么这样画?第三题,下列现象哪些是平移?哪些是旋转?自己选择用符号表示出来,然后指生说说为什么这样判断。第四题让学生立完成,然后用动画形式集体订正。第五题作为课堂作业立完成。

初中数学说课稿3

  老师们:您们好!

  非常高兴能有机会和大家来交流说课活动,谨此向在座的老师们学习。

  我说课的内容是华师大版九年义务教育七年级教科书代数第一册第二章第二节"数轴"的第一课时内容。

  一:教材分析:

  本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低这一事例出发,引出数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学习相反数、绝对值等有理数知识的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础知识。

  二:教学目标:

  根据新课标的要求及七年级学生的认知水平我特制定的本节课的教学目标如下:

  1. 使学生理解数轴的三要素,会画数轴。

  2. 能将已知的有理数在数轴上表示出来,能说出数轴上的已知点所表示的有理数,理解所有的有理数都可以用数轴上的点表示

  3. 向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣。

  三:教学重难点确定:

  正确理解数轴的概念和有理数在数轴上的表示方法是本节课的教学重点,建立有理数与数轴上的点的对应关系(数与形的结合)是本节课的教学难点。

  四:学情分析:

  ⑴知识掌握上,七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述。

  ⑵学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析。

  ⑶由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

  ⑷心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性。

  五:教学策略:

  由于七年级学生的理解能力和思维特征,他们往往需要依赖直观具体形象的图形的年龄特点,以及七年级学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,也为使课堂生动、有趣、高效,特将整节课以观察、思考、讨论贯穿于整个教学环节之中,采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生"多观察、动脑想、大胆猜、勤钻研"的研讨式学习方法。教学中积极利用板书和练习中的图形,向学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,从而培养学生的数形结合的思想。

  为充分发挥学生的主体性和教师的主导辅助作用,教学过程中设计了七个教学环节:

  (一)、温故知新,激发情趣

  (二)、得出定义,揭示内涵

  (三)、手脑并用,深入理解

  (四)、启发诱导,初步运用

  (五)、反馈矫正,注重参与

  (六)、归纳小结,强化思想

  (七)、布置作业,引导预习

  六:教学程序设计:

  (一)、温故知新,激发情趣:

  首先复习提问:有理数包括那些数?学生回答后让大家讨论:你能找出用刻度表示这些数的实例吗?学生会举出很多例子,但是由于温度计与数轴最为接近,它又是学生熟悉的带刻度的度量工具,所以在教学中我将用它来抽象概括为数轴这一数学模型,于是让学生观察一组温度计,并提问:

  (1)零上5°C用 5 表示。

  (2)零下15°C 用 -15 表示。

  (3)0°C 用 0 表示。

  然后让大家想一想:能否与温度计类似,在一条直线上画上刻度,标出读数,用直线上的点表示正数、负数和0呢?答案是肯定的',从而引出课题:数轴。结合实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为顺利完成教学任务作了思想上的准备。

  (二)、得出定义,揭示内涵:

  教师设问:到底什么是数轴?如何画数轴呢?

  (1)画直线,取原点(这里说明在直线上任取一点作为原点,这点表示0,数轴画成水平位置是为了读、画方便,同时也为了有美的感觉。)

  (2)标正方向(这里说明我们在水平位置的数轴上规定从原点向右为正方向是习惯与方便所作,由于我们只能画出直线的一部分,因此标上箭头指明正方向,并表示无限延伸。)

  (3)选取单位长度,标数(这里说明任选适当的长度作为单位长度,标数时从原点向右每隔一个单位长度取一点,依次表示1、2、3…负数反之。单位长度的长短,可根据实际情况而定,但同一单位长度所表示的量要相同。)

  由于画数轴是本节课的教学重点,教师板书这三个步骤,给学生以示范。

  画完数轴后教师引导学生讨论:"怎样用数学语言来描述数轴?"(通过教师的亲切的语言启发学生,以培养师生间的默契)

  通过讨论由师生共同得到数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。

  至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程。

  (三)、手脑并用,深入理解:

  1、让学生讨论:下列图形哪些是数轴,哪些不是,为什么?

  A、

  B、

  C、

  D、

  E、

  F、

  A、B、C三个图形从数轴的三要素出发,D和F是学生可能出现的错误,给学生足够的观察、思考的时间然后展开充分的讨论,教师参与到学生的讨论之中去接触学生,认识学生,关注学生。

  2、为进一步强化概念,在对数轴有了正确认识的基础上,请大家在练习本上画一个数轴,(请同学画在黑板上)

  学生在画数轴时教师巡视并予以个别指导,关注学生的个体发展,画完后教师给出评价,如"很好""很规范""老师相信你,你一定行"等语言来激励学生,以促进学生的发展;并强调:原点、正方向和单位长度是数轴的三要素,画数轴时这三要素缺一不可。

  我设计以上两个练习,一个是动脑想,通过分析、判断正误来加深对正确概念的理解;一个是通过动手操作加深对概念的理解。

  (四)、启发诱导,初步运用:

  有了数轴以后,所有的有理数都可以表示在数轴上,那么反过来,数轴上的点是否只表示有理数呢?作为一个问题我让学生去思考,为后面实数的学习埋下伏笔,这里不再展开。

  安排课本23页的例1,

  利用黑板上的例题图形让学生来操作,教师提出要求:

  1、要把点标在线上 2、要把数标在点的上方

  通过学生实际操作,可以加深对数轴的理解,进一步掌握用数轴上的点表示数的方法,同时激发学生的学习兴趣,调动学生的积极性,从而使学生真正成为教学的主体。

  当然,此题还可以再说出几个有理数让学生去标点,好让更多的学生去展示自己,并进一步让学生从中感受已知有理数能用数轴上的点表示,从而加深对数形结合思想的理解。

  (五)、反馈矫正,注重参与:

  为巩固本节的教学重点让学生独立完成:

  1、课本23页练习1、2

  2、课本23页3题的(给全体学生以示范性让一个同学板书) 为向学生进一步渗透数形结合的思想让学生讨论:

  3、数轴上的点P与表示有理数3的点A距离是2,

  (1)试确定点P表示的有理数;

  (2)将A向右移动2个单位到B点,点B表示的有理数是多少?

  (3)再由B点向左移动9个单位到C点,则C点表示的有理数是多少?

  先让学生通过小组讨论得出结果,通过以上练习使学生在掌握知识的基础上达到灵活运用,形成一定的能力。

  (六)、归纳小结,强化思想:

  根据学生的特点,师生共同小结:

  1、为了巩固本节课的教学重点提问:你知道什么是数轴吗?你会画数轴吗?这节课你学会了用什么来表示有理数?

  2、数轴上,会不会有两个点表示同一个有理数?会不会有一个点表示两个不同的有理数?

  让学生牢固掌握一个有理数只对应数轴上的一个点,并能说出数轴上已知点所表示的有理数。

  (七)、布置作业,引导预习:

  为面向全体学生,安排如下:

  1、全体学生必做课本25页1、2、3

  2、最后布置一个思考题:

  与温度计类似,数轴上两个不同的点所表示的两个有理数大小关系如何?

  (来引导学生养成预习的学习习惯)

  七:板书设计:(略)

  总之,在教学过程中,我始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来主动发现结论,实现师生互动,通过这样的教学实践取得了良好的教学效果,我认识到教师不仅要教给学生知识,更要培养学生良好的数学素养和学习习惯,让学生学会学习,才能使自己真正成为一名受学生欢迎的好教师。

  以上是我对本节课的设想,不足之处请老师们多多批评、指正,谢谢!

初中数学说课稿4

  教材分析

  学情分析

  教学目标

  方法手段

  教学程序

  板书设计

  本节数学活动课要讲授的是沪科版七年级数学课 本 第73-74页的内容 ,它包括两个方面问题:(1)课本中的数学活动Ⅱ,一个两位数,将它的个位与十位上的数字对调,得到的新两位数与原两位数的和、差分别是11的倍数和9的倍数。(2)是阅读与思考,它通过归纳,猜想把数学模型中蕴涵的数学规律进行总结,概括出来。这些数学规律也是相关的用代数式表示一个量,整式的加减运算等内容。

  本节数学活动课是在学生学习完整式的加减之后学习的,它对提高学生的学习兴趣,深化代数式的相关知识很有用处。它的入点低,学生具有整式及小学数学的基本知识就可以解决本节课的问题,不论成绩好坏,绝大多数的同学都可以参与进来,后面的归纳推理对提高学生分析问题,解决问题的能力十分有利,它能促进学生从具体的形象思维向抽象逻辑思维的过渡。

  教学内容

  地位作用

  重点难点

  重点: 1、发现两位数互换位置后得到新的两位数与原两位数的和、差的整除性质及理由。

  2、对归纳推理的理解和简单的运用。

  难点:1、怎样用整式的加减及整除方面知识证明两位数互换后得到的新两位数与原两位数的

  和、差、可被 11、9整除;

  2、对正方形拼图的理解

  我现在教授的七年级11班是我校的艺术班,学生基本素质不错,学生的运算能力、阅读理解能力、简单的逻辑推理能力较强,大部分同学的求知欲强,思考积极,前面的一节活动课学生反映较好。

  数学活动课是希望尽可能多的学生参与进来,本节课要求学生的运算能力较低,学生基本都具有。后面的归纳、推理部分,正方形的拼图问题题目较长,要求学生们具备相当的阅读理解能力,在这一点上教学时要注意引导学生细致认真阅读题目,分析题意,相信同学也是没有问题的。

  本节课的前面学生已学习用代数式表示一个整数、整式的加减、小学中的整数的某些整除性质,这对学习第一个问题的知识储备是充分的。从小学阶段到初一,学生对拼图、填数问题已具有相当的经验,也有一定的逻辑推理能力,但对第二个问题中的理解由正方形拼图而得的规律以及完成后面的练习还是有点难度的,需要在教师的铺垫、引导下完成。

  知识准备

  能力储备

  学生情况

  努力创设课堂中的愉悦情境,使学生处在积极思考、大胆猜想的氛围之中,提高学生学习数学的兴趣,让学生通过拼图来体会、理解归纳推理的原理。

  让学生体会到生活中处处皆有数学,数学学习不是枯燥乏味的。深入之中,就发现它有无穷的乐趣,提高学生的学习兴趣,同时培养学生热爱科学、严谨治学的精神。

  (1)通过用代数式表示两位数,掌握两位数与交换其位置后的两位数它们的和能被11整

  除,差能被9整除的规律及其理由。

  (2)利用正方形的拼图,让学生理解其中蕴涵的数学原理,逐步认识数学中的归纳推 理。

  知识与技能

  过程与方法

  情感态度价值观

  第一问题由幻灯片展示两位数的和、差及得到的整除性质,第二个问题要利用多媒体动画,展示正方形叠加及其中蕴涵的数学原理。得出的结论及相关练习用幻灯片展示,练习中有几条直线的交点数问题可在黑板上通过逐步加直线得到交点数的变化规律来解决。

  本节课第一个问题通过启发引导来解决,第二个问题要学生在自主探究、合作交流、类比推理的基础上,教师加以点拨、引导来完成。

  教学时对第一个问题,可把课本的例子再类似的举几个,通过计算让学生自己得出结论,然后引导学生通过用代数式的表达、整式的加减,取得理论上的证明。对第二个问题,可以通过动画让学生体会到正方体的叠加,实际上就是一组从1开始的连续奇数的和,进而得到从1开始连续奇数和就等于奇数个数的平方这一规律,要先从直观拼图再到抽象概括。

  教学方法

  学法指导

  教学手段

  教学程序

  第一个问题

  第二个问题

  初中数学活动课说课稿

  (1)首先通过上次数学活动课中研究过的六位数419419的整除性质,让学生回忆它的理由

  设计意图:学生对这样特殊的六位数特点本来就觉得好玩,一下子就可以抓住学生,同时也复习到用代数式怎样表示它们,被7、11、13整除有什么要求等,对本节课第一个问题的引入,教学都有利。

  (2)用幻灯片展示一组算式, 比课本中多2

  个算式,让学生去观察、计算,并请同学归纳出它们的规律。

  设计意图:培养学生细心观察、积极思考的良好习惯。

  设计意图:逐步拨高,让学生既够得着又需费点力,学生在这样的提问中会兴趣盎然地积极思考下去,同时也能在感性认识的基础上得到理性上的论证。

  (4)幻灯展示:两位数10a+b,交换位置后10b+a,它们的和是11a+11b=11(a+b),差是9 a-9b=9(a-b),分别是11的.倍数和9的倍数。

  设计意图:给学生一个完整的结论,严密的证明,培养学生严谨、细致的治学精神。

  (5)为了提高学生学习兴趣,巩固所学知识,再给学生带两个问题回去研究。

  ①一个整数如果各位数上的数字和是3的倍数,则这个数是3倍数,数字和是9倍数,这个数是9倍数。

  ②一个整数,如果它的后两位数是4倍数,则这个数是4的倍数

  (3)提出问题:上述规律是否任意两位数都有用,理由是什么,若它们不是和而是差,还具有什么样的规律?理由又是什么?

  教学程序

  第一个问题

  第二个问题

  初中数学活动课说课稿

  第二个问题

  (1)用幻灯展示问题2,并作细致的讲解,由问题1过渡到问题2时注意用语言自然过渡过来。

  2、同学们仔细观察图形,讨论一下填写上面表格。

  (1)

  (2)

  (3)

  (4)

  (5)

  (2)演示动画,让学生分析动画中蕴涵的数学原理

  设计意图:让学生理解理正方形拼图中的数学原理有一定难度,学生不太好理解,通过动画让学生感受到正方形的层层叠加,先把1、2、3个图形叠加,用算式表示阴影正方形个数及结果,再类比地让学生得到4、5两个图形的阴影正方形个数及结果,再得到第K个图形叠加的阴影正方形个数及结果。

  3、我们把S1表示第一个图中的阴影正方形个数,S2表示第1、2两个图中阴影正方形的个数和,S3表示第1、2、3三个图中阴影正方形的个数和S4、S5、……Sk类推,请同学们想一想,填写下表:

  S1= S4=

  S2= S5=

  S3= ……

  Sk=

  设计意图:用恰当、富有挑战性的语言把学生自然过渡到问题2上来,让学生在悬疑中集中注意力,提高兴趣,同时问题2的题意比较绕口,容易混,要引导学生读题,并填写表格,在填写第4、5两个图时就要让学生分析它们阴影正方形的个数是多少,你是怎样算出来的,你有几种方法,锻炼学生思维的灵活性,最后再由特殊一般,得到第K个图形的情形。

  (3)把得到的算式及结果用幻灯展示,让学生思考总结得到一般性规律,同时让学生理解这样把数学规律进行推理概括就叫归纳推理。

  (4)出示幻灯片:找出规律,填数①1,2,4,8,16,32, , ;

  ②20,18,16,14, 12, , ;

  ③1,1,2,3,5,8, , ;

  设计意图:作简单的巩固练习

  (5)出示幻灯片

  设计意图:这个问题仍是巩固练习,因有难度,需通过在黑板上演示两条直线最多有一个交点,每次加一条直线逐步变成三、四条直线相交,找出交点的规律,归纳出n条直线相交时最多的交点个数,总结出一般性结论。

  平面上2条直线最多有几个交点?当直线是3条、4条、n条时最多有多少个交点?

  (6)出示幻灯片:

  如图是用五角星摆成的三角形图案,每条边上有n(n>1)个五角星,每个

  图案上的五角星个数用s表示.

  (1)观察图案当n=5时,s= ;

  (2)当n=100时,猜想s= ;

  (3)你能得出怎样的规律?(用n表示s)

  n=5

  先让学生计算n=5时,图形中的五角星个数,分析计算的方法,计算方法有多种,要让学生充分地展示。

  再进一步类比得到n=100时的五角星个数,并用n表示一般性规律。

  设计意图:本题也是巩固练习,学生计算n=5的五角星个数时,会得到很多不同的计算方法,能活跃课堂气氛,让学生积极思考,参与到课堂教学中来。

  (7)出示幻灯片,小结本节课内容

  (8)出示幻灯片布置课外作业

  1、说明一个四位数,如果各数位上的数字和是3的倍数则这个数是3的倍数,数字和是9的倍数,这个数是9的倍数。

  2、在线段AB之间加上一个点,则原线段成3条线段,加入2个点则原线段就有6条线段,试写出线段AB之间分别加3个点、4个点、n个点时原线段中所有的全部线段数各是多少?

  设计意图:前面也有让学生课下思考3和9的倍数问题,但学生对n位的整数用代数式表示有困难,对它同学们容易理解意义,但不好表达,为了让学生方便表示,就降低了难度,选一个四位数加以证明。四位数能完整地证明,则本节课中学习的用代数式表示数,整式的加减及整除性质就基本掌握了,在线段中加点数线段的个数与直线的交点问题同属一类,有点难度,让学生在练习中巩固本节课堂中的归纳推理。

  直线相交的交点个数

  正方形问题中的第4、 5图

  叠加的计算算式。

  K时的情形。

  逐步展示正方形中的阴影正方形

  阴影正方形个数以及在

  及用n表示的一般性规律

  n=5时的个数计算

  方法

  n=100计算公式

  五角星问题

初中数学说课稿5

  一、 教材分析

  (一)教材地位

  这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

  (二)教学目标

  知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。

  过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。

  情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。

  (三)教学重点:

  经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。

  教学难点:用面积法(拼图法)发现勾股定理。

  突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。

  二、教法与学法分析:

  学情分析:七年级学生已经具备一定的'观察、归纳、猜想和推理的能力。他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强。

  教法分析:结合七年级学生和本节教材的特点,在教学中采用"问题情境----建立模型----解释应用---拓展巩固"的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。

  学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。

  三、 教学过程设计

  1.创设情境,提出问题

  2.实验操作,模型构建

  3.回归生活,应用新知

  4.知识拓展,巩固深化

  5.感悟收获,布置作业

  (一)创设情境提出问题

  (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。

  (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个"数学化"的过程,从而引出下面的环节。

  二、实验操作模型构建

  1.等腰直角三角形(数格子)

  2.一般直角三角形(割补)

  问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?

  设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。

  问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)

  设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。

  通过以上实验归纳总结勾股定理。

  设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。

  三。回归生活应用新知

  让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。

  四、知识拓展巩固深化

  基础题,情境题,探索题。

  设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。

  基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?

  设计意图:这道题立足于双基。通过学生自己创设情境 ,锻炼了发散思维。

  情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗?

  设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。

  探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。

  设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。

  五、感悟收获

  布置作业:这节课你的收获是什么?

  作业:

  1、课本习题2.1

  2、搜集有关勾股定理证明的资料。

  板书设计 探索勾股定理

  如果直角三角形两直角边分别为a,b,斜边为c,那么

  设计说明:

  1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。

  2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。

初中数学说课稿6

  一、教材分析

  1、教材的地位和作用

  这节教材是初中数学xx 年级 册的内容,是初中数学的重要内容之一。一方面,这是在学习了xx 的基础上,对xx的进一步深入和拓展;另一方面,又为学习 等

  知识奠定了基础,是进一步研究xx的工具性内容。因此本节课在教材中具有承上启下的作用。

  2、学情分析

  关于学生在此之前已经学习了xx,对xx已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但对于xx的理解,(由于其抽象程度较高,)学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。

  3、教学重难点

  根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:

  难点确定为:

  二、教学目标分析

  根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:

  1.知识与技能目标:

  2.过程与方法目标:

  3.情感态度与价值目标:

  三、教学方法分析

  本节课我将采用启发式、讨论式结合的教学方法,以问题的提出、问题的解决为主线,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题,在引导分析时,给学生流出足够的思考时间和空间,让学生去联想、探索,从真正意义上完成对知识的自我建构。

  另外,在教学过程中,采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。

  四、教学过程分析

  为了有序、有效地进行教学,本节课我主要安排以下教学环节:

  (1) 复习就知,温故知新

  设计意图:建构主义主张教学应从学生已有的知识体系出发,xx是本节课深入研究xx的认知基础,这样设计有利于引导学生顺利地进入学习情境。

  (2) 创设情境,提出问题

  设计意图:以问题串的形式创设情境,引起学生的.认知冲突,使学生对旧知识产生设疑,从而激发学生的学习兴趣和求知欲望。

  通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节———

  (3) 发现问题,探求新知

  设计意图:现代数学教学论指出,教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过 观察分析、独立思考、小组交流 等活动,引导学生归纳。

  (4) 分析思考,加深理解

  设计意图:数学教学论指出, 数学概念(定理等) 要明确其 内涵和外延(条件、结论、应用范围等) ,通过对 定义 的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点。

  通过前面的学习,学生已基本把握了本节课所要学习的内容,此时,他们急于寻找一块用武之地,以展示自我,体验成功,于是我把学生导入第xx环节。

  (5) 强化训练,巩固双基

  设计意图:几道例题及练习题由浅入深、由易到难、各有侧重,其中例1……例2……,体现新课标提出的让不同的学生在数学上得到不同发展的教学理念。这一环节总的设计意图是反馈教学,内化知识。

  (6) 小结归纳,拓展深化

  其中小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主体地位,让学生畅谈本节课的收获.

  (7)当堂检测 对比反馈

  (8) 布置作业,提高升华

  要以作业的巩固性和发展性为出发点,我设计了必做题和选做题,必做题是对本节课内容的一个反馈,选做题是对本节课知识的一个延伸。总的设计意图是反馈教学,巩固提高。

初中数学说课稿7

  一.说教材

  教材分析

  《轴对称图形》这课选自义务教育课程标准实验教科书《数学》三年级下册。教材在编排上从具体到抽象、从感性到理性、从实践到理论,指导同学们感知图形的轴对称现象,层次分明,循序渐进。

  对称是一种基本的图形变换,包括轴对称、中心对称、平移对称、旋转对称和镜面对称等多种形式。在自然界和日常生活中具有对称性质的事物很多,同学们对于对称现象并不陌生。例如,许多艺术作品、建筑设计中都体现了对称的风格。对称的物体给人一种匀称、均衡的美感。

  教材从同学们熟悉的事物入手,通过形式多样的活动,让同学们初步感知生活中的对称现象,进而认识简单的轴对称图形和对称轴,为同学们今后进一步探索简单图形的轴对称特性,把握简单图形之间的轴对称关系,以及利用轴对称方法对图形进行变换或设计图案打好基础。教材是按照知识引入——概念教学——知识应用的顺序逐步展开的,体现了知识的形成过程。教材先通过天安门、飞机、奖杯的实物图让同学们观察、分析他们的共同特点,引出“对称”的概念。接下来教材将这几样物品抽象为平面图形,引导同学们通过对折发现轴对称图形的基本特征,并初步描述了轴对称图形的概念。教材还在图中出现了“对称轴”这一名词,但没有给“对称轴”下定义或作出描述,只是让同学们有所认识。

  第二道例题则让同学们利用刚掌握的轴对称图形的初步知识,“做”出轴对称图形。通过这些活动,帮助同学们进一步积累感性认识,丰富对轴对称图形的体验,锻炼同学们的实践能力。

  “想想做做”中,通过一系列的习题,加深同学们对轴对称图形的认识。其中第3题在方格纸上提供一个轴对称图形的一半,要求画出它的另一半,使同学们有机会再一次在操作中体会轴对称图形的特征。在“想想做做”后面,还安排了“你知道吗”,介绍自然界中一些对称现象以及世界上一些著名的对称的建筑,以进一步拓展同学们的知识视野,帮助同学们体会“对称”的科学与美学价值。

  学情分析

  轴对称现象是同学们新接触的一个知识点,这种现象广泛蕴涵在大自然中,学习这部分的知识,要求同学们具备观察能力和动手操作能力。

  说教学目标

  1.知识目标:使同学们感知现实世界中普遍存在的轴对称现象。通过观察、操作等活动,自主探求轴对称图形的特征,理解对称轴的含义,感受数学的美。

  2.能力目标:在活动中培养同学们从具体到抽象,再从抽象回到具体的思维方法。培养观察、操作、表达、思维能力与探索意识,发挥同学们的想象力、创造力,激发同学们的审美观点,培养同学们创造美的能力。

  3.情感目标:让同学们在实际操作活动中体验学习数学的乐趣,鼓励他们感受美、欣赏美、创造美,感悟数学知识的魅力,激发同学们学好数学的欲望。

  教学重点:理解轴对称图形的特征

  教学难点:掌握辨别轴对称图形的方法

  二.说教法

  陶行知先生说过这样一句话:“我们要活的书,不要死的书;要真的书,不要假的书;要动的书,不要静的书;要用的书,不要读的书。总起来说,我们要以生活为中心的教学做指导,不要以文字为中心的教科书。”在数学教学中,从生活中同学们感兴趣的物体出发,强有力的吸引住了同学们,让同学们体会数学与生活的紧密联系;为同学们创设探究学习的情境;同时根据教材的.编排和儿童的心理特点和思维特点,这节课准备采用观察发现,小组讨论,合作学习发现的方法,培养同学们的探究能力和合作能力。

  三.说学法

  新课程标准指出:同学们是学习的主体。要让同学们成为真正的主人,就必须在数学活动中学习数学,也就是在创造数学中学习数学。本课从具体的同学们感兴趣的物体中,让同学们自己发现问题,提出问题,体验探索成功的快乐;通过动手操作,小组讨论来解决自己提出的问题;通过有层次的练习,提高同学们解决问题的能力,巩固所学知识。

  四.说教学过程

  我先从孩子们感兴趣的玩导入,在教师与同学们共同玩的过程中拉近我和同学们的距离,达到了寓教于乐的目的。 这节课的一开始,我先通过剪出一个“爱心”图,来吸引同学们的注意力,激发同学们的兴趣,并且也能比较自然地揭示这节课的课题。

  接下来,出示例题中的图片,让同学们通过仔细观察,并且自己动手折一折,来发现这些物体是对称的,揭示出“完全重合”这样一个概念,使同学们初步感知到平面图形的对称性,随后,让同学们继续动手折纸,进一步揭示出“轴对称图形”的概念,以及让同学们初步了解对称轴。

  然后给出一些同学们知道的几何图形和其他图形,即课本中的“试一试”,同样采用小组合作,共同探讨的学习方法,来解决问题。这样设计,能充分调动同学们的各种感官参与学习,既发挥了同学们的解决问题的主动性,又培养了同学们的发散思维,同时一定难度的图形判断,让同学们在跳一跳的前提下才摘到他要的果实,激发同学们爱动脑筋,勇于探索。

  同学们学习完了“试一试”,此时同学们对轴对称图形已经有了不少的认识,这时,就需要一些习题和游戏来巩固前面所学的知识,我安排了“找一找”、“做一做”、“猜一猜”三个环节,“找一找”就是课本中的“想想做做”第一题、第五题和第六题,主要是让同学们来判断哪些图形是轴对称图形,这两道题主要是为了让同学们进一步的巩固对轴对称图形的认识,能准确地判断出一个图形是不是轴对称图形。“做一做”就是课本中的例题2,让同学们自己动手来制作出轴对称图形,给了同学们自我表现、自我创造的空间,有利于培养同学们积极的学习态度和学数学的亲切感,也有利于培养同学们对美的感受能力。“猜一猜” 是在给出轴对称图形的一半的基础上,让同学们猜出这个图形的形状。在这一题上是由简到难,层层递进。这既能调动同学们的积极性,又能使同学们进一步加深对轴对称图形以及对称轴的认识。

  最后,我安排了一个“欣赏图片,情感体验”的环节,用课件展示出一系列美丽的轴对称图形,让同学们充分地享受这些美丽的轴对称图形带来的视觉上的冲击,感受美、欣赏美。在这节课的最后,我用一个轴对称的汉字——“美”来进行总结,并将课题补充完整,美丽的轴对称图形。

  全课设计,力求做到符合同学们的认知特点,想方设法创设生动活泼的教学情境,使同学们始终处于好奇、好学的学习情绪中,让每一位同学们都学有所得,都体会到成功的喜悦。

初中数学说课稿8

  写说课稿一定要有正确的思路,下面一起去看看小编为你整理的初中数学万能说课稿吧,希望对大家有帮助!

  一、说教材

  用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。

  二、说学情

  任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。

  三、说教学目标

  【知识与技能】

  掌握应用因式分解的方法,会正确求一元二次方程的解。

  【过程与方法】

  通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化”“降次”的数学思想方法。

  【情感态度与价值观】

  通过探讨一元二次方程的解法,体会“降次”化归的思想,逐步养成主动探究的精神与积极参与的意识。

  四、说教学重难点

  【重点】

  运用因式分解法求解一元二次方程。

  【难点】

  发现与理解分解因式的方法。

  五、说教法、学法

  本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比---探究-----归纳”的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。

  同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。

  六、说教学过程

  (一)导入新课

  因为数学来源与生活,所以以学生的实际生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。

  (二)探索新知

  问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?

  学生小组讨论,探究后,展示三种做法。

  问题:小颖用的什么法?——公式法

  小明的解法对吗?为什么?——违背了等式的性质,x可能是零。

  小亮的解法对吗?其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

  问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便]

  师引导学生得出结论:

  如果a·b=0,那么a=0或b=0

  (如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)

  “或”有下列三层含义

  ①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0

  问题3:

  (1)什么样的一元二次方程可以用因式分解法来解?

  (2)用因式分解法解一元二次方程,其关键是什么?

  (3)用因式分解法解一元二次方程的理论依据是什么?

  (4)用因式分解法解一元二方程,必须要先化成一般形式吗?

  因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二次方程的方法称为因式分解法。

  这是我会提示学生:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的.知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。”

  (三)巩固提高

  在这个环节,我遵循巩固与发展相结合的原则,先引导学生练习,练习如下:

  用分解因式法解下列方程吗?

  在学生做练习时,进行巡看,及时掌握学生的练习情况,以便进行有针对性的评讲。个别题目采取小组合作的方式对本课知识进行巩固,不仅调动学生学习的积极性、主动性,增强学生积极参与教学活动意识和集体荣誉感,而且还能培养学生的观察能力和判断能力。学生完成课本练习后,补充一道习题,目的是提升学生对因式分解法的理解。同时也起到了分层次教学的作用。

  (四)小结作业

  最后是小结环节,通过本节课的学习你学到了什么,有什么收获。整个过程让学生自己进行,以培养学生的归纳、概括的能力。考虑带学生在知识、技能、能力等方面的发展都不尽相同,因此,我分层次布置作业,作业分为必做、选做两类,以便同时兼顾到学有困难和学有余力的学生。

  七、说板书设计

  我的板书本着清晰、简洁、直观的原则,呈现知识的内在联系,板书如下:

初中数学说课稿9

  一。教材分析

  1.教材的地位和作用

  这节课是在同学们已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使同学们更为深刻的理解"数形结合"的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2.教学目标和要求

  (1)知识与技能:使同学们理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高同学们解决问题的能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展同学们的数学思维,增强学好数学的愿望与信心。

  3.教学重点:对二次函数概念的理解。

  4.教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  二。教法学法设计

  1.从创设情境入手,通过知识再现,孕伏教学过程。

  2.从同学们活动出发,通过以旧引新,顺势教学过程。

  3.利用探索、研究手段,通过思维深入,领悟教学过程。

  三。教学过程

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (y=kx+b,k≠0;y=kx ,k≠0;y=k/x , k≠0)

  3.一次函数(y=kx+b)的自变量是什么?函数是什么?常量是什么?为什么要有k≠0的条件? k值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助同学们弄清自变量、函数、常量等概念,加深对函数定义的理解。强调k≠0的条件,以备与二次函数中的a进行比较。

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1圆的半径是r(cm)时,面积s (cm?)与半径之间的关系是什么?

  解:s=πr?(r>0)

  例2设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和y(元)与x之间的关系是什么(不考虑利息税)?

  解: y=100(1+x)?

  =100(x?+2x+1)

  = 100x?+200x+100(0

  教师提问:以上两个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让同学们列出关系式,启发同学们观察,思考,归纳出二次函数与一次函数的联系: (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。(2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如y=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1.强调"形如",即由形来定义函数名称。二次函数即y 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2.在 y=ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3.为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4.在例2中,二次函数y=100x2+200x+100中, a=100, b=200, c=100.

  5.b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则y=ax2+c;

  若c=0,则y=ax2+bx;

  若b=c=0,则y=ax2.

  注明:以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于同学们更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c.

  (1)y=3(x-1)?+1

  (2)s=3-2t?

  (3)y=(x+3)?- x?

  (4) s=10πr?

  (5) y=2?+2x

  (6)y=x4+2x2+1(可指出y是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让同学们在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1.已知一个直角三角形的两条直角边长的和是10cm.

  (1)当它的一条直角边的长为4.5cm时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Scm2,其中一条直角边为xcm,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让同学们经历由具体到抽象的过程,从而降低同学们学习的难度。

  2.已知正方体的棱长为xcm,它的表面积为Scm2,体积为Vcm3.

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,同学们会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让同学们体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3.设圆柱的高为h(cm)是常量,底面半径为rcm,底面周长为Ccm,圆柱的体积为Vcm3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求同学们熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4. 篱笆墙长30m,靠墙围成一个矩形花坛,写出花坛面积y(m2)与长x之间的函数关系式,并指出自变量的`取值范围。

  【设计意图】此题较前面几题稍微复杂些,旨在让同学们能够开动脑筋,积极思考,让同学们能够"跳一跳,够得到".

  (五)拓展延伸

  1. 已知二次函数y=ax2+bx+c,当 x=0时,y=0;x=1时,y=2;x= -1时,y=1.求a、b、c,并写出函数解析式。

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2.确定下列函数中k的值

  (1)如果函数y= xk^2-3k+2 +kx+1是二次函数,则k的值一定是______

  (2)如果函数y=(k-3)xk^2-3k+2+kx+1是二次函数,则k的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0.

  (六) 小结思考

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让同学们来谈本节课的收获,培养同学们自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到同学们还有哪些不清楚的地方,以便在今后的教学中补充。

  (七) 作业布置

  必做题:

  1. 正方形的边长为4,如果边长增加x,则面积增加y,求y关于x 的函数关系式。这个函数是二次函数吗?

  2. 在长20cm,宽15cm的矩形木板的四角上各锯掉一个边长为xcm的正方形,写出余下木板的面积y(cm2)与正方形边长x(cm)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1.已知函数 是二次函数,求m的值。

  2.试在平面直角坐标系画出二次函数y=x2和y=-x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发同学们继续学习二次函数图象的兴趣。

  四。教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以同学们为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

初中数学说课稿10

  一、教材分析

  同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践,自主探索与合作交流的教学理念。通过练习形成良好的应用意识。

  同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。

  因此,同底数幂的乘法性质既是有理数幂的乘法的推广, 又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。

  二、教学目标

  (一),知识技能

  1。理解同知识技能底数幂的乘法法则

  2。运用同底数幂的乘法法则解决一些实际问题

  (二),能力训练

  1。在进一步体会幂的意义时,发展推理能力和有条理的表达能力

  2。通过"同底数幂的乘法法则"的推导和应用,使学生领会特殊—————一般—————特殊的认知规律

  (三),情感价值

  体味科学的思想方法,接受数学情感的熏陶,激发学生探究的兴趣

  教学重点: 正确理解同底数幂的乘法法则

  教学难点:正确理解和应用同底数幂的乘法法则

  教学手段:为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学。

  三、教学方法分析

  1。教法分析

  根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考,探索,再通过交流, 讨论,发现性质,使学生的学习过程成为再发现,再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考, 学会合作,学会创新;

  对于推导出的性质及其语言叙述,则可以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合。而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯。

  2。学法指导

  教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习。

  本节课主要是教给学生"动手做,动脑想,多合作,大胆猜,会验证" 的研讨式学习方法。这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体。以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容。

  四、教学过程

  一。创设情景 提出问题

  运用多媒体投影引例,引导学生观察由问题而得到式子特点:105×107=

  二。探索交流 发现新知

  (一),提出新任务:

  思考:an 表示的意义是什么 其中a,n,an分 别叫做什么

  问题:1。25表示什么

  2。10×10×10×10×10 可以写成什么形式

  思考:1式子103×102的意义是什么

  2这个式子中的两个因式有何特点

  3。a3×a2=

  过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由。

  思考:请同学们观察下面各题左右两边,底数,指数 有什么关系

  103 ×102 = 10( ) 23 ×22 = 2( ) a3× a2 = a( )

  (二),提高任务难度:

  引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述。

  猜想:am · an= (当m,n都是正整数)

  (三),提出挑战:能否用一个比较简洁的式子概括出你所发现的规律

  (四),提出更高挑战:要求学生从幂的意义这个角度加以解释,说明,验证它的正确性。

  然后要求学生按步骤独立思考和探索:

  1。比一比:识记运算性质

  2。回想一下你是用什么办法记住的 用这个办法能否持久 你能否提出一个更有建设性的改进措施

  猜想:am · an= (当m,n都是正整数)

  对运算性质的剖析 条件:

  ①乘法

  ②同底数幂

  结果:

  ①底数不变

  ②指数相加 (目的是为了化解难点)

  3。再识记。在理解的基础上,结合性质的特点和语言 叙述,有目的地提取记忆。

  4。提问:"你认为这个性质的应用,应特别注意什么 "

  (五),应用练习 促进深化

  1。计算:(1)107 ×104 ; (2)(—x)2 · (—x)5 。

  2。计算:(1)23×24×25 (2)y · y2 · y3

  你能回答开始提出问题吗 105×107等于多少呢

  练习设计:

  巩固练习:

  1计算:(抢答)

  2计算:

  3。下面的计算对不对 如果不对,怎样改正

  变式训练:填空:

  思考题 :

  1。计算:

  2。填空:

  五、提炼小结 完善结构

  "通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法 "引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败。

  六、布置作业 延伸学习

【说教材】

  一、说课内容:苏教版数学四年级下册第43~45页。

  二、教学内容的地位、作用和意义:

  这部分内容是在学生已经初步掌握了长方形、正方形、三角形的特征,以及初步认识平行和相交的基础上,进一步认识平行四边形,并掌握其特征。通过这节课深入的学习,使学生为今后进一步学习了平行四边行面积计算打下基础。教材中第一个例题,首先联系生活实际,让学生找出一些常见物体上的平行四边形,再要求学生根据个人的生活经验举例,充分感知平行四边形;接着让学生做出一个平行四边形并相互交流,初步感受平行四边形的基本特征。在此基础上,抽象出平行四边形的图形让学生认识,引导学生探索发现平行四边形的基本特征。第二个例题认识平行四边形的底和高,并揭示高和底的意义。“试一试”让学生动手测量几个平行四边形指定底边上的高及相应的.底,进一步感受高与底的意义。

  三、说目标

  1、知识与技能目标

  (1)理解平行四边形的概念及其特征。

  (2)认识平行四边形的底和高,会画高。

  (3)培养学生实践能力,观察能力、分析能力。

  2、过程与方法目标

  让学生通过动手操作,动眼观察,动口表达,动脑思考等方式使学生在活动中进一步积累认识图形的学习经验,学会用不同方法做出一个平行四边形,会在方格纸上画平行四边形,能正确判断一个平面图形是不是平行四边形,能测量或画出平行四边形的高。

  3、情感态度与价值观目标

  让学生感受图形与生活的密切联系,感受平面图形的学习价值,进一步发展对“空间与图形”的学习兴趣,在探索中感受成功的乐趣。

  四、教学重点、难点:

  教学重点:是认识平行四边形;利用材料做平行四边形并发现其特征;能测量或画出平行四边形的高。

  教学难点:是学生在做平行四边形的过程中体会其特征。

  五、说教具和学具准备

  教具:三角板、平行四边形纸片、长方形活动框、小黑板等。

  学具:三角板、平行四边形纸片、量角器。

  【说学情】

  四年级学生思维活跃,求知欲强,喜欢动手、动脑。有很强的好奇心和探索欲望。因此在教学中我抓住这些特点让他们通过动眼观察、动手操作、动脑分析归纳等来理解所学知识。

  【说教法和学法】

  这节课教师要注重以教师的导和学生的学为主线,通过教师提问、演示、指导。学生动手操作、观察、分析、讨论、归纳等方法来完成教学,使学生在轻松愉快中获得新知。我们认为在本课教学中应体现以下几点

  一、联系生活实际进行教学

  “数学的生活化,让学生学习现实的数学”是新课程理念之一。教学时应先让学生从生活场景图中找平行四边形,再寻找生活中的平行四边形。最后举例说明平行四边形容易变形的特性在生活中的应用。使学生感受到“数学从生活中来,到生活中去”。使数学课堂回归到生活世界。

  二、让学生在活动中探究

  心理学家皮亚杰说:“活动是认识的基础,智慧从动作开始。”在教学中通过学生做平行四边形、相互交流,从中感受平行四边形的特征。在“想想做做”中通过拼一拼、移一移、剪一剪等活动,让学生感受不同平面图形之间的联系。

  三、独立思考与合作交流

  本课教学安排了两次合作交流,在合作交流之前我都给予学生充足的时间去独立思考,这样在合作交流时才有话可说,思维才能碰撞。

  【说教学程序】

  一、创设情境导入新课

  1、介绍七巧板

  师:你们玩过七巧板吗?你知道七巧板是由哪些不同的图形组成的吗?

  一千多年前,中国人发明了七巧板。七巧板是由七块图形组成的,它可以拼出丰富的图案来。外国人管它叫“中国魔板”,在他们看来,没有哪一种智力玩具比它更神奇的了。

  2、导入:今天就让我们一起来认识其中的一个图形—平行四边形。(出示课题)

  【设计意图:以学生喜爱的“七巧板”为切入点,引发学生的学习热情。】

  二、尝试探索建立模型

  (一)认一认形成表象

  师:老师这儿的图形就是平行四边形。改变方向后问:它还是平行四边形吗?

  不管平行四边形的方向怎样变化,它都是一个平行四边形。(图贴在黑板上)

  (二)找一找感知特征

  1、在例题图中找平行四边形

  师:老师这有几幅图,你能在这上面找到平行四边形吗?

  2、寻找生活中的平行四边形

  师:其实在我们周围也有平行四边形,你在哪些地方见过平行四边形?(可相机出示:活动衣架)

  (三)做一做探究特征

  1、刚才我们在生活中找到了一些平行四边形,现在你能利用手边的材料做出一个平行四边形吗?

  2、在小组里交流你是怎么做的并选代表在班级里汇报。

  3、刚才同学们成功的做出了一个平行四边形,在做的过程中,你有什么发现或收获吗?你是怎样发现的?(小组交流)

  4、全班交流,师小结平行四边形的特征。(两组对边分别平行并且相等;对角相等;内角和是360度。)

  【设计意图:新课程强调体验性学习,学生学习不仅要用脑子去想,而且还要用眼睛看,用耳去听,用嘴去说,用手去做,即用自己的身体去亲身经历,用自己的心灵去感悟。这里通过认平行四边形、找平行四边形和做平行四边形,使学生经历由表象到抽象的过程。在一系列的活动中,让学生感悟到了平行四边形的特征。】

  (四)练一练巩固表象

  完成想想做做第1、2题

  (五)画一画认识高、底

  1、出示例题,你能量出平行四边形两条红线间的距离吗?(学生在自制的图上画)说说你是怎么量的?

  2、师:刚才你们画的这条垂直线段就是平行四边形的高。这条对边就是平行四边形的底。

  3、平行四边形的高和底书上是怎么说的呢?(学生看书)

  4、这样的高能画多少条呢?为什么?你能画出另一组对边上的高,并量一量吗?(机动)

  5、教学“试一试”。(学生各自量,交流时强调底与高的对应关系)

  6、画高(想想做做第5题)(提醒学生画上直角标记)

  三、动手操作巩固深化

  1、完成想想做做第3、4题

  第3题:拼一拼、移一移,说说怎样移的?

  第4题引入:木匠张师傅想把一块平行四边形的木板锯成两部分,拼成一张长方形桌面,假如你是张师傅,该怎么锯呢?想试试吗?找一张平行四边形的纸试一试。

  2、完成想想做做第6题(课前做好,课上活动。)

  (1)师拿出自做的长方形,捏住对角相反方向拉一拉,看你发现了什么?师做生观察,互相交流。

  (2)判断:长方形是平行四边形吗?小组交流然后再说理由,此时老师可问学生长方形是什么样的平行四边形?(特殊)特殊在哪了?

  (3)得出平行四边形的特性

  师再捏住平行四边形的对角向里推。看你发现了什么?

  师:三角形具有稳定性,通过刚才的动手操作,你觉得平行四边形有什么特性呢?(不稳定性、容易变形)

  (4)特性的应用

  师:平行四边形容易变形的特性在生活中有广泛的应用。你能举些例子吗?(学生举例后阅读教科书P45“你知道吗?”)

  【设计意图:】

  四、畅谈收获拓展延伸

  1、师:今天这节课你有什么收获吗?

  2、用你手中的七巧板拼我们学过的图形。

  3、寻找平行四边形容易变形的特性在生活中的应用。

  【设计意图:扩展课堂教学的有限空间,课内课外密切结合。课结束时,布置实践作业,要学生寻找平行四边形容易变形的特性在生活中的应用,使学生的课堂学习和课后生活联系起来,使学生感受到课堂知识在生活中的应用,体验到生活中时时处处离不开数学,增强数学学习的亲切感和实用性。】

初中数学说课稿11

  一、教材分析

  分析本节课在教材中的地位和作用,以及在分析数学大纲的基础上确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。

  1、 解方程在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。解方程是代数中的主要内容之一。一元一次方程有许多直接的应用,最主要的,解一元一次方程是学习其它方程和方程组的“基石”。解各种方程和方程组,通过降次、消元等方法,最后都归纳为解一元一次方程。

  2、一元一次方程这一章可以归纳为两个方面:第一方面的内容是等式的有关概念,等式的性质以及方程的有关概念;第二方面的内容是一元一次方程的概念,解一元一次方程的步骤,以及列出一元一次方程解应用题。解方程是列一元一次方程解应用题的基础,本章的学习重点在于使学生能根据具体问题中的数量关系列出一元一次方程,掌握解一元一次方程的基本方法,能运用一元一次方程解决实际问题。学生能否正确的解方程和列一元一次方程解应用题关键是这一节的学习。

  从以上两点不难看出它的地位和作用都是很重要的。

  3、接下来,介绍本节课的教学目标、重点和难点。

  教学大纲是我们确定教学目标,重点和难点的依据。根据教学大纲的要求,确定了本节课的教学目标。1、知识目标是:(1)熟悉利用等式性质解一元一次方程的基本过程;(2)通过具体的例子,归纳移项法则;(3)掌握解一元一次方程的基本方法,能熟练求解一元一次方程(数字系数)能判别解的合理性。2、能力目标是:(1)通过学生观察、独立思考等过程、培养学生归纳、概括的能力;(2)进一步让学生感受到并尝试寻找不同的解决问题的方法。;3、情感目标是:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯。(2)培养学生严谨的思维品质。由于合并同类项学生已非常熟悉,系数化成一实际是利用等式的性质,而移项是新事物又是解方程的关键,因此本节课的重点是:移项法则及其应用。由于本阶段的学生往往注意不到项的符号及移向后的符号,很容易出现符号错误。因此我确定本节课的难点是;移项的同时要变号。

  二、教材处理

  本节课是在前面学习了《你今年几岁了》的基础上进行的,学生已经很牢固地掌握了方程、一元一次方程的概念及等式性质并且能利用等式性质熟练的解方程,因此我没有把时间过多地放在复习这些旧知识上,而是通过游戏激发学生的兴趣,这样既巩固了前面所学的知识又培养了学生的创造能力,真是一举三得。进而设疑激发学生的好奇心,为后面的学习做好准备。采用生动形象的事例,在移项法则的得出过程中,我让学生自主观察发现规律并用自己的语言描述规律的内容。然后交流各自所发现的规律及用语言表书的过程,这样通过自主学习、组内交流、合作,达到培养学生自主、互助的精神。由于在移项时,学生常犯一些错误,如移项忘记变号,因此在例题的处理上我采取用两种方法解例1、例2,并将两者加以对照,进而使学生加深对移项法则的理解且自觉改正错误。然后我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我将在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的'参与下积极有序的进行。

  三、教学方法和数学手段

  在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习不断克服学生学习中的被动情况,使其在教学过程中在掌握知识同时、发展智力、受到教育。

  四、教学过程的设计。

  1、 引入:①通过游戏引入:同学们,你们是不是经常完游戏?今天我们来玩一个数学游戏,我手中有6、X、30三张卡片,请同学们用他们编一元一次方程,比一比看谁编的又快又对。学生思考,根据自己对一元一次方程的理解程度自由编题。②设疑:现在老师遇到一道难题,请同学们帮助解决一下,请看大屏幕:解方程5X-2=8解:5X=8+2 X=2 看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘。

  2、探索规律,总结移项法则:出示引例并鼓励学生通过观察归纳,独立发现移项法则。对有困难的同学,教师通过适当的语言提示,引导学生发现规律。这样学生能够全副身心的投入到思考问题中去,让学生亲身参加了探索发现,获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出移项法则。

  3、例题:对于例1,首先鼓励学生试着解方程,教师注意发现学生可能出现的错误,把错误集中起来,组织学生进行组织交流。最后规范书写格式。例2,教师首先放手让学生去做。只要学生的解法合理就鼓励。

  4、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。

  5、 归纳总结:教师引导学生做出本节课小结,归纳解方程的方法及易出错的地方。以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。

初中数学说课稿12

  一、设计思想:

  数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活

  的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合《课标》精神。

  网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评价-巩固练习-总结提高

  二、背景分析:

  (一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:《分式》

  学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。

  本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。

  (二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进

  行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的'能力,培养应用意识,渗透类比转化思想。

  (三)教学方式:自学导读—同伴互助—精讲精练

  (四)教学媒体:Midea---Class纯软多媒体教学网几何画板

  三、教学目标:

  知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。

  过程方法:通过经历实际问题→列分式方程→探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。

  情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。

初中数学说课稿13

  一、教材分析

  圆柱的认识是全日制聋校实验教材第十五册第二单元的内容。圆柱是一种比较常见的几何立体图形,这部分内容包括圆柱的特征,圆柱各部分的名称和圆柱侧面展开图。教学这部分内容,有利于发展学生的空间观念,为进一步学习圆柱的侧面积,表面积,体积和解决实际问题打好基础。

  二、学情分析

  由于聋校八年级学生已经初步具备了一定的自学能力,能够根据具体情况,在已有认知的基础上进行相互探讨,所以我在本课采用让学生动手操作、自主学习、合作探究等方法来获取新知识。并利用多媒体课件来突破本课的重、难点,同时针对聋生听力受损,语言发展相对滞后的特点,在课堂上注重了聋生语言的培养,采用双语教学,鼓励聋生自主发言,发展聋生的语言。

  三、教学目标

  1、知识与技能目标

  使学生知道圆柱各部分的名称,理解圆柱的侧面展开图,掌握圆柱的特征。

  2、过程与方法目标

  通过观察、想象、操作、讨论等活动,培养学生自主探究、动手实践、合作创新的能力;同时渗透转化的思想。

  3、情感态度价值观目标

  运用课件提供的教学情境,使学生能直观感受圆柱的侧面展开图,初步渗透事物发展、变化规律的辩证观点。并使学生切实感受到数学与自己的生活息息相关,体验到学习数学的价值。

  教学重点:掌握圆柱的特征。

  教学难点:理解圆柱侧面展开图的特点。

  四、教学内容与过程

  本课我采用了实践操作法、课件演示法、小组讨论式教学法等相关的教法。教师只是以组织者,引导者与合的身份,引导学生主动参与到整个学习过程中去,在互动的过程中充分地激起学生的探究热情。因此我精心设计了以下几个环节。

  (一)创设情境,激趣导入

  1、打开多媒体课件,出示圆柱的实物模型。同时感知生活中的一些具体实物,让学生明白数学于生活。

  (通过以上教学,让学生初步接触圆柱,从生活实际感知圆柱,感受数学同生活息息相关。同时很巧妙自然的引入了课题,为学习新课做好铺垫。)

  (二)自主探究,了解圆柱

  1、学生自主学习,认识圆柱的各部分名称及特征。

  教师引导:拿出自己准备的实物,结合教材,通过看一看,摸一摸,想一想圆柱各部分的.名称是什么?都有什么特征?

  2、生汇报,师订正。通过学生的语言,描述出圆柱各部分的特征,师课件演示加以验证。(课堂实录)

  (针对聋生注意力不集中的特点,我让学生自主探究,自己提供教学材料,这样能迅速激发学生的探索兴趣,为探求新知作好心理上的准备,并运用课件验证了自己的想法。对圆柱的底面、侧面和高进行了演示,让学生清晰的感知各部分的名称和特征,一目了然,更加有效地激发了学生的观察兴趣,同时提高了学生的注意力。)

  (三)合作交流,深化感知

  1、合作探究,圆柱的侧面展开。

  (1)学生分组动手操作:把圆柱模型的侧面剪开,再展开,观察形状。

  (2)师:你是怎样剪的?展开后得到了一个什么图形?

  (3)学生操作后汇报,教师通过课件验证和补充。(课堂实录)

  (该环节是精心设计的,力求让学生成为学习的主人,通过学生的合作探究,体现学生在数学课堂上的主人意识。同时通过多媒体课件的演示,展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征。)

  2、同伴互助,寻求发现

  (1)让学生在动手操作中得到展开后长方形的长和宽与圆柱的关系。

  (2)教师课件演示展开图加以验证,轻松的突破本课的难点。(课堂实录)

  (让学生在合作中发现问题、探讨问题、解决问题,激发学生的求知欲望,同时通过形象的课件演示,轻松的分散了本课的难点,突出了本课的重点;调动了学生学习的积极性。)

  (四)巩固拓展,延伸应用

  课件出示:

  1、下面哪些物体是圆柱?

  2、指出下列圆柱的底面、侧面和高。

  3、实际测量圆柱的底面周长和高。

  (练习的设计,既有对刚刚学过的圆柱认识的运用,也有围绕易混易错之处,让学生用手势判断,使学生在宽松的氛围里,勇于发言、敢于辩论。训练说理能力的同时,学生的思维也得到训练。)

  (五)自主小结,提升理念

  师:我们初步认识了圆柱,谁

  能告诉老师,对于圆柱你都知道了什么?

  (这既是课堂小结,也是对学生的人文培养重要体现。让学生在自主发挥的同时,培养了学生的表达能力。)

  五、教育技术的应用

  信息技术作为一种教育手段,越来越多的被运用到课堂教学中,不但能创设一定的情境,而且能调动学生的积极性,更加的凸显教学效果。而flash课件更是以其演示功能强大,动画效果明显等特点被广大教师经常所应用。本课我运用了flash课件对相关的知识进行了动画演示,课件贯穿了整个课堂。上课伊始,我对圆柱的底面、侧面和高进行了课件演示,让学生清晰的感知各部分的名称和特征。让学生在开课的时候,就对本课产生一种兴趣。课中展示了圆柱侧面不同剪法的演变过程,浅显易懂,让学生很容易就了解了圆柱侧面的特征,轻松的突破了难点,同时,在此基础上展示圆柱侧面展开后与展开前的关系,让学生一目了然,总之,在课堂教学中运用信息技术,能更好的完成教学目标,达到更好的教学效果。

  六、评价和反思

  课程标准中指出:既要关注学生的学习结果,又要关注学生的学习过程,更要关注他们在活动过程中所表现出来的情感与态度。本课以学生已有的生活经验为基础,让学生通过想象、描述、合作交流,从实物观察、到动手操作等多种方式来认识圆柱,并运用多媒体课件,及时有效的分散了难点,突破了重点,让学生在轻松愉悦的气氛中,扎实的掌握了所学的知识,突出“做数学”这个数学理念。也使学生在合作中共同进步,体验成功。

初中数学说课稿14

  各位专家领导,上午好:今天我说课的课题是《勾股定理》

  一、教材分析:

  (一)本节内容在全书和章节的地位

  这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。

  (二)三维教学目标:

  ⒈理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;

  ⒉通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。

  在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。

  通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。

  (三)教学重点、难点:

  勾股定理的证明与运用

  用面积法等方法证明勾股定理

  对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。

  ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;

  ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的.课堂环境;

  ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。

  二、教法与学法分析

  数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。

  新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使学生真正成为学习的主人。

  三、教学过程设计

  (一)创设情景

  多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?

  问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。

  (二)动手操作

  ⒈课件出示课本P99图19.2.1:

  观察图中用阴影画出的三个正方形,你从中能够得出什么结论?

  学生可能考虑到各种不同的思考方法,老师要给予肯定,并鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。

  ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图19.2.2(一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能够发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。

  ⒊再问:当边长不为整数的直角三角形是否也存在这一结论呢?投影例题:一个边长分别为1.5,3.6,3.9这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。

  (三)归纳验证

  通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整堂课充分发挥学生的主体作用,真正获取知识,解决问题。

  先后三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也有利于培养学生严谨、科学的学习态度。

  (四)问题解决

  ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。

  ⒉自学课本P101例1,然后完成P102练习。

  (五)课堂小结1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话”

  ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。

  ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。

  目的是对学生进行爱国主义教育,激励学生奋发向上。

  (六)布置作业:课本P104习题19.2中的第1.2.3题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。

  以上内容,我仅从“说教材”,“说学情”、“说教法”、“说学法”、“说教学过程”上来说明这堂课“教什么”和“怎么教”,也阐述了“为什么这样教”,希望各位专家领导对本次说课提出宝贵的意见,谢谢!

初中数学说课稿15

各位评委:

  大家好!今天我说课的题目是有理数的加法,所选用的教材为人教版7年级上册第一章第3课时,对于本节课我想做以下汇报:

  一教材分析

  1.地位和作用

  本节课要求学生经历有理数加法法则和运算律的探索过程,理解和掌握有理数加法运算法则,并能运用加法运算律简化计算。

  2.学情分析

  初一年级学生学习基础较薄弱,学习能力还不够强。通过小学四则运算的学习,头脑中已形成相关计算规律,知道数都是指正整数、正分数和零等具体的数,因此学生可能会用小学的思维定势去认知、理解有理数的加法。但是学生已经知道数已经扩大到有理数,出现了负数,并且学习了数轴和绝对值,这些基础是学习新课的必备条件。为了学生能切实掌握所学知识,在教学中特别设计了反馈练习;对于教材中的例题和练习题,将作适当的延伸拓展和变式处理。

  3.教学目标

  认知目标

  (1)掌握有理数加法的法则,理解有理数加法的意义。(2)并能进行有理数加法的运算。 能力目标

  ①学生亲身经历探究有理数加法法则的过程,深刻理解数形结合的思想,由特殊到一般、由具体到抽象的认知规律。

  ②学生通过动手、发现、分类、比较类方法的学习,提高了对事物之间是普遍联系又是变化发展的辩证观点的再认识。

  情感目标

  通过联系实际自主探究、自主观察、分类归纳有理数加法法则,能够体会到数学的应用价值;在合作学习中增强与他人的合作。

  4.教学重点与难点

  重点:有理数加法法则中符号的确定。

  难点:异号两数相加的符号。

  二、教学方法与教材处理

  1.教学方法

  师生互动探究式教学 以教学大纲为依据,渗透新的教育理念,遵循教师为主导、学生为主体的原则,结合初一学生的求知心理和已有的认知水平开展教学。学生通过熟悉的现实生活情景,发现有些计算方式是不够的,引发认知冲突,提出需要学习新的知识。引导学生类比探究有理数加法法则,形成师生互动,体现了数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。

  2.学法引导

  学法突出自主探索、研讨发现。知识是通过学生自己动口、动脑,积极思考、主动探索获得。学生在讨论、交流、合作、探究活动中总结有理数加法法则。在活动中注重引导学生体会用类比和数形结合的方法扩展知识的过程,培养学生学习的主动性和积极性。

  3.设计理念

  《大纲》要求,对于课程实施和教学过程,教师在教学过程中应与学生积极互动、共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。 本节课的教学,是在学生已有的加法知识基础上,创设情景,产生认知冲突,引导学生开展观察特点、类比归纳、讨论交流等探究活动,在活动中向学生渗透类比数形结合的思想、特殊与一般的辩证唯物主义观点。

  三、教学过程

  根据教材的`结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点。本节课的教学设计环节:

  前提诊测,复习提问: 复习旧知识的目的是对学生新课应具备的"认知前提能力"和"情感前提特征进行检测判断",所诊测的绝对值意义和数轴与新的内容有关。

  提出问题,创设情景: 从实际问题引入,提出表示数量关系仅用正数表示是不够的,体现了数学源于生活。从而提出研究有理数加法的问题。

  尝试指导,实施目标: 从实例出发,利用输赢球得分原理和在数轴上运动方向符号的特点,通过小组探究得出加法法则。

  变式训练,巩固目标: 为了更好地理解、掌握有理数加法法则,根据不同学生的学习需要,按照分层递进的教学原则,设计安排了4个由浅入深的例题。

  (1)是整数的异号两数相加;

  (2)是整数的同号两数相加;

  (3)是小数和分数的异号两数相加。同时配有两个由低到高、层次不同的巩固性练习,体现渐进性原则,希望学生能将知识转化为技能形成性测试,检测目标:把"反馈---调节"贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。

  归纳总结,纳入知识系统: 由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题。

【初中数学说课稿】相关文章:

初中数学的说课稿12-02

经典初中数学说课稿11-09

初中数学《数轴》说课稿11-23

数学说课稿初中06-07

初中数学说课稿03-11

初中数学优秀说课稿05-20

初中数学面试说课稿11-20

初中数学的说课稿【精】12-08

初中数学的说课稿【热门】12-07

初中数学《菱形》说课稿04-05