高中数学必修一函数的说课稿

时间:2020-11-30 11:43:22 高中说课稿 我要投稿

高中数学必修一函数的说课稿

  导语:函数的定义:给定一个数集A,对A施加对应法则f,记作f(A),得到另一数集B,也就是B=f(A)。那么这个关系式就叫函数关系式,简称函数。下面是由小编整理的关于高中数学必修一函数说课稿。欢迎阅读!

高中数学必修一函数的说课稿

  篇一:高一数学必修一说课稿

  函数的单调性

  今天我说课的题目是《函数的单调性》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、教学过程五方面逐一加以分析和说明。

  一、说教材

  1、教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第3节。函数是高中数学的课程,它是描述事物运动变化的模型,而函数的单调性是函数的一大特征,它为我们之后的学习奠定重要基础。

  2、学情分析

  本节课的学生是高一学生,他们在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用倒数研究单调性的相关知识奠定了基础。

  教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能(1)理解函数的单调性和单调函数的意义;

  (2)会判断和证明简单函数的单调性。

  2.过程与方法

  (1)培养从概念出发,进一步研究性质的意识及能力;

  (2)体会数形结合、分类讨论的数学思想。

  3.情感态度与价值观

  由合适的例子引发学生探求数学知识的欲望,突出学生的主观能动性,激发学生学习数学的兴趣。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点

  重点:

  函数单调性的概念,判断和证明简单函数的单调性。

  难点:

  1.函数单调性概念的认知

  (1)自然语言到符号语言的转化;

  (2)常量到变量的转化。

  2.应用定义证明单调性的代数推理论证。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课标的教学理念,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法理解函数的单调性及特征。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我设计以下五个环节来进行我的教学。

  (一)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x、y=-x、y=|x|,让学生作出这些函数的图像,然后让学生讨论这些函数图像是上升的还是下降的,由此引入到我的新课。在这个过程中不仅可以检查学生掌握基本初等函数图像的情况,而且符合学生的认知结构,通过学生自主探究,从知识产生、发展的过程中构建新概念,有利于激发学生的思维和学习的积极主动性。

  (二)讲授新课

  1.问题:分别做出函数y=x2,y=x+2的图像,指出上面的函数图象在哪个区间是上升的,在哪个区间是下降的?

  通过学生熟悉的图像,及时引导学生观察,函数图像上A点的运动情况,引导学生能用自然语言描述出,随着x增大时图像变化规律。让学生大胆的去说,老师逐步修正、完善学生的说法,最后给出正确答案。

  2.观察函数y=x2随自变量x变化的情况,设置启发式问题:

  (1)在y轴的右侧部分图象具有什么特点?

  (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1<x2时,y1,y2的大小关系如何?是不是在定义域内任取两个点都有这个规律呢?

  (3)如何用数学符号语言来描述这个规律?

  教师补充:这时我们就说函数y=x2在(0,+∞)上是增函数。

  (4)反过来,如果y=f(x)在(0,+∞)上是增函数,我们能不能得到自变量与函数值的变化规律呢?

  类似地分析图象在y轴的左侧部分。

  通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当x1<x2时,都有f(x1)<f(x2)。

  仿照单调增函数定义,由学生说出单调减函数的定义。

  教师总结归纳单调性和单调区间的定义。注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。

  (我将给出函数y=x2,并画出这个函数的图像,让学生观察函数图像的特点,让他们描述函数图像的增减性,慢慢得到函数单调性的概念。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解)

  (三)巩固练习

  1练习1:说出函数f(x)=的单调区间,并指明在该区间上的单调性。x

  练习2:练习2:判断下列说法是否正确

  ①定义在R上的函数f(x)满足f(2)>f(1),则函数是R上的增函数。

  ②定义在R上的函数f(x)满足f(2)>f(1),则函数是R上不是减函数。

  1③已知函数y=,因为f(-1)<f(2),所以函数f(x)是增函数。x

  1我将给出一些具体的函数,如y=,f(x)=3x+2让学生说出函数的单调区间,并指明在该区间x

  上的单调性。通过这种练习的方式,帮助学生巩固对知识的掌握。

  (四)归纳总结

  我先让学生进行小结,函数单调性定义,判断函数单调性的方法(图像、定义),然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,为下一节课的教学过程做好准备。

  (五)布置作业

  必做题:习题2-3A组第2,4,5题。

  选做题:习题2-3B组第2题。

  新课程理念告诉我们,不同的人在数学上可以获得不同的发展,因此要设计不同程度要求的习题。

  篇二:高一数学必修一说课稿

  二次函数的图像说课稿

  今天我说课的题目是《二次函数的图像》,下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  教材的地位和作用

  本节内容选自北师大版高中数学必修1,第二章第4.1节。二次函数的图像在教材中起着承上启下的作用。

  学情分析

  本节课的学生是高一学生,他们在初中的时候已经学习过有关内容,为本节课的学习打下了基础,另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  二、教学目标分析

  基于以上对教材和学情的分析以及新课标教学理念,我将教学目标分为以下三个部分:

  1.知识与技能

  理解二次函数中参数a,b,c,h,k对其图像的影响;

  2.过程与方法

  通过体验对二次函数图像平移的研究方法,能迁移到其他函数图像的研究。

  3.情感态度与价值观

  通过本节的学习,进一步体会数形结合思想的作用,感受到数学中数与形的.辩证统一。

  三、教学重难点分析

  通过以上对教材和学生的分析以及教学目标,我将本节课的重难点确定如下

  重点:

  二次函数图像的平移变换规律及应用。

  难点:

  探索平移对函数解析式的影响及如何利用平移变换规律求函数解析式,并能把平移变换规律迁移到其他函数。

  四、教法与学法分析

  1、教法分析

  基于以上对教材、学情的分析以及新课改的要求,本节课我采用启发式教学、多媒体辅助教学和讨论法。学生可以在多媒体中感受到数学在生活中的应用,启发式教学和讨论法发散学生思维,培养学生善于思考的能力。

  2、学法分析

  新课改理念告诉我们,学生不仅要学知识,更重要的是要学会怎样学习,为终生学习奠定扎实的基础。所以本节课我将引导学生通过合作交流、自主探索的方法进行学习。

  五、教学过程

  为了更好的实现本课的三维目标,并突破重难点,我将设计以下五个环节来进行我的教学。

  (1)知识导入

  温故而知新,我将先从之前学习的知识引入,给出一些函数,比如y=x2、y=2x2,让学生作出这些函数的图像,然后让学生比较这些函数图像的相同点和不同点,由此引入我的新课。一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验。

  (2)讲授新课

  例1:画出函数y=2x2,y=2(x+1)2,y=2(x+1)2+3的图像

  让学生画出他们的图像并观察函数图像的特点,再让学生与多媒体课件展示的图像进行对比,得出结论:若二次函数的解析式为y=ax2+bx+c,先将其化成y=a(x+h)2+k的形式,从而判断出y=ax2+bx+c是如何由y=ax2变换得到的。

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x2到y=ax2,y=ax2到y=a(x+h)2+k,y=ax2到y=ax2+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。在这个过程中,学生把对图像的感性认识转化为了数学关系,这种从特殊到一般的学习过程有利于学生对概念的理解,

  (3)巩固练习

  我将组织学生进行练习,完成课本44页1-3题。通过这种练习的方式,帮助学生巩固和加深二次函数中参数对图像的影响。

  (4)归纳总结

  我先让学生进行小结,然后教师进行补充,在这样一个过程中既有利于学生巩固知识,也有利于教师对学生的学习情况有一定的了解,可以进行适当反思,为下一节课的教学过程做好准备。

  (5)布置作业

  略

【高中数学必修一函数的说课稿】相关文章:

高中数学必修五《正弦定理》说课稿10-29

人教版高中数学《函数的最大值和最小值》说课稿范文01-30

高中化学必修1说课稿模板07-28

初中数学说课稿:反比例函数12-10

高中数学经典说课稿范文06-24

一些常用的JavaScript函数11-14

tatic函数与普通函数的区别12-20

高中语文必修精选《雨巷》说课稿07-20

高中数学说课稿(15篇)11-03

高中数学说课稿15篇10-16