高中数学必修1《对数函数》说课稿

时间:2022-11-01 12:55:32 高中说课稿 我要投稿

高中数学必修1《对数函数》说课稿(精选7篇)

  作为一位杰出的老师,总归要编写说课稿,说课稿可以帮助我们提高教学效果。我们该怎么去写说课稿呢?下面是小编为大家整理的高中数学必修1《对数函数》说课稿,欢迎阅读与收藏。

高中数学必修1《对数函数》说课稿(精选7篇)

  高中数学必修1《对数函数》说课稿 篇1

  我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  地位和作用

  本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。

  二、目标分析

  (一)教学目标

  根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:

  1、知识与技能

  (1)进一步体会函数是描述变量之间的依赖关系的重要数学模型;

  (2)理解对数函数的概念、掌握对数函数的图像和性质;

  (3)由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

  2、过程与方法

  引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。

  3、情感态度与价值观

  通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。

  (二)教学重点、难点及关键

  1、重点:

  对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

  2、 难点:

  底数a对对数函数的图像和性质的影响。

  [关键]对数函数与指数函数的类比教学。

  由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。

  三、教法、学法分析

  (一)教法

  教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

  1、启发引导学生思考、分析、实验、探索、归纳;

  2、采用“从特殊到一般”、“从具体到抽象”的方法;

  3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;

  4、投影仪演示法。

  在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

  (二)学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  1、对照比较学习法:学习对数函数,处处与指数函数相对照;

  2、探究式学习法:学生通过分析、探索,得出对数函数的定义;

  3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;

  4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

  四、教学过程分析

  (一)教学过程设计

  1、创设情境,提出问题。

  在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

  问题一:这是一个怎样的函数模型类型呢?

  设计意图

  复习指数函数

  问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

  设计意图

  为了引出对数函数

  问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

  设计意图

  (1)为了让学生更好地理解函数;

  (2)为了让学生更好地理解对数函数的概念。

  2、引导探究,建构概念。

  (1)对数函数的概念:

  同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。

  设计意图

  前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

  但是在习惯上,我们用x表示自变量,用y表示函数值。

  问题一:你能把以上两个函数表示出来吗?

  问题二:你能得到此类函数的一般式吗?

  设计意图

  体现出了由特殊到一般的数学思想

  问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。

  问题四:你能根据指数函数的定义给出对数函数的定义吗?

  问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?

  设计意图

  前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。

  (2)对数函数的图像与性质

  问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

  设计意图

  提示学生进行类比学习

  合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。

  y=2x;y=log2x y=( )x,y=log x

  合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?

  设计意图

  在这儿体现“从特殊到一般”、“从具体到抽象”的方法。

  合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。

  设计意图

  学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么?

  问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0<a<1呢?

  问题3:对数式logab的值的符号与a,b的取值之间有何关系?

  知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。

  3、自我尝试,初步应用。

  例1:求下列函数的定义域

  y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。)

  例2:利用对数函数的性质,比较下列各组数中两个数的大小:

  (1)㏒2 3.4,log2 3.8;

  (2)log0.5 1.8,log0.5 2.1;

  (3)log7 5,log6 7

  (在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

  合作探究4:已知logm 4<logn 4,比较m,n的大小。

  设计意图

  该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。

  4、当堂训练,巩固深化。

  通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

  采用课后习题1,2,3.

  5、小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

  (1)小结

  ①对数函数的概念

  ②对数函数的图像和性质

  ③利用对数函数的性质比较大小的一般方法和步骤,

  (2)反思

  我设计了三个问题

  ①通过本节课的学习,你学到了哪些知识?

  ②通过本节课的学习,你最大的体验是什么?

  ③通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

  我设计了以下作业:

  必做题:课后习题A 1,2,3;

  选做题:课后习题B 1,2,3;

  (三)板书设计

  板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

  高中数学必修1《对数函数》说课稿 篇2

  教学目标:

  (一)教学知识点:

  1.对数函数的概念;

  2.对数函数的图象和性质.

  (二)能力训练要求:

  1.理解对数函数的概念;

  2.掌握对数函数的图象和性质.

  (三)德育渗透目标:

  1.用联系的观点分析问题;

  2.认识事物之间的互相转化.

  教学重点:

  对数函数的图象和性质

  教学难点:

  对数函数与指数函数的关系

  教学方法:

  联想、类比、发现、探索

  教学辅助:

  多媒体

  教学过程:

  一、引入对数函数的概念

  由学生的预习,可以直接回答“对数函数的概念”

  由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

  问题:

  1.指数函数是否存在反函数?

  2.求指数函数的反函数.

  指出反函数的定义域.

  3.结论

  所以函数与指数函数互为反函数.

  这节课我们所要研究的便是指数函数的反函数——对数函数.

  二、讲授新课

  1.对数函数的定义:

  定义域:(0,+∞);值域:(-∞,+∞)

  2.对数函数的图象和性质:

  因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

  因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

  研究指数函数时,我们分别研究了底数和两种情形.

  那么我们可以画出与图象关于直线对称的曲线得到的图象.

  还可以画出与图象关于直线对称的曲线得到的图象.

  请同学们作出与的草图,并观察它们具有一些什么特征?

  对数函数的图象与性质:

  图象

  性质(1)定义域:

  (2)值域:

  (3)过定点,即当时,

  (4)上的增函数

  (4)上的减函数

  3.图象的加深理解:

  下面我们来研究这样几个函数:,,,.

  我们发现:

  与图象关于X轴对称;与图象关于X轴对称.

  一般地,与图象关于X轴对称.

  再通过图象的变化(变化的值),我们发现:

  (1)时,函数为增函数,

  (2)时,函数为减函数,

  4.练习:

  (1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

  (2)比较下列各组数中两个值的大小:

  (3)解关于x的不等式:

  思考:(1)比较大小:

  (2)解关于x的不等式:

  三、小结

  这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

  四、课后作业

  课本P85,习题2.8,1、3

  高中数学必修1《对数函数》说课稿 篇3

  教学目标

  1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能正确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.

  2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.

  3. 通过对数函数有关性质的研究,培养学生观察,分析,归纳的思维能力,调动学生学习的积极性.

  教学重点,难点

  重点是理解对数函数的定义,掌握图像和性质.

  难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.

  教学方法

  启发研讨式

  教学用具

  投影仪

  教学过程

  一. 引入新课

  今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的`,今天我们将从反函数的角度介绍新的函数.

  反函数的实质是研究两个函数的关系,所以自然我们应从大家熟悉的函数出发,再研究其反函数.这个熟悉的函数就是指数函数.

  提问:什么是指数函数?指数函数存在反函数吗?

  由学生说出 是指数函数,它是存在反函数的.并由一个学生口答求反函数的过程:

  由 得 .又 的值域为 ,

  所求反函数为 .

  那么我们今天就是研究指数函数的反函数-----对数函数.

  二.对数函数的图像与性质 (板书)

  1. 作图方法

  提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是可以的,让学生从中选出一种,最终确定用图像变换法画图.

  由于指数函数的图像按 和 分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种情况 和 ,并分别以 和 为例画图.

  具体操作时,要求学生做到:

  (1) 指数函数 和 的图像要尽量准确(关键点的位置,图像的变化趋势等).

  (2) 画出直线 .

  (3) 的图像在翻折时先将特殊点 对称点 找到,变化趋势由靠近 轴对称为逐渐靠近 轴,而 的图像在翻折时可提示学生分两段翻折,在 左侧的先翻,然后再翻在 右侧的部分.

  学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出和 的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:

  2. 草图.

  教师画完图后再利用投影仪将 和 的图像画在同一坐标系内,如图:

  然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)

  3. 性质

  (1) 定义域:

  (2) 值域:

  由以上两条可说明图像位于 轴的右侧.

  (3) 截距:令 得 ,即在 轴上的截距为1,与 轴无交点即以 轴为渐近线.

  (4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于 轴对称.

  (5) 单调性:与 有关.当 时,在 上是增函数.即图像是上升的

  当 时,在 上是减函数,即图像是下降的.

  之后可以追问学生有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?学生看着图可以答出应有两种情况:

  当 时,有 ;当 时,有 .

  学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.

  最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)

  对图像和性质有了一定的了解后,一起来看看它们的应用.

  三.巩固练习

  练习:若 ,求 的取值范围.

  四.小结

  高中数学必修1《对数函数》说课稿 篇4

  一、说教材

  1、教材的地位和作用

  函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

  2、教学目标的确定及依据

  根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

  (1) 知识目标:

  理解对数函数的意义;掌握对数函数的图像与性质;初步学会用

  对数函数的性质解决简单的问题.

  (2) 能力目标:

  渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

  分析、归纳等逻辑思维能力.

  (3) 情感目标:

  通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数

  学的精确和美妙之处,调动学生学习数学的积极性.

  3、教学重点与难点

  重点:

  对数函数的意义、图像与性质.

  难点:

  对数函数性质中对于在a1与01两种情况函数值的不同变化.

  二、说教法

  学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

  1、教学方法:

  (1)启发引导学生实验、观察、联想、思考、分析、归纳;

  (2)采用“从特殊到一般”、“从具体到抽象”的方法;

  (3)渗透类比、数形结合、分类讨论等数学思想方法.

  2、教学手段:

  计算机多媒体辅助教学.

  三、说学法

  “授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)类比学习:与指数函数类比学习对数函数的图像与性质.

  (2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

  归纳得出对数函数的图像与性质.

  (3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

  使问题得以圆满解决.

  四、说教程

  1、温故知新

  我通过复习细胞分裂问题,由指数函数 引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.

  设计意图:既复习了指数函数和反函数的有关知识,又与本节内容有密切关系,

  有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生

  分析问题的能力

  2、探求新知

  高中数学必修1《对数函数》说课稿 篇5

  一、说教材

  1、教材的地位和作用

  函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

  2、教学目标的确定及依据

  根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

  (1)知识目标:

  掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。

  (2)能力目标:

  渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

  (3)情感目标:

  构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

  3、教学重点与难点

  重点:

  对数函数的图像与性质。

  难点:

  对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化。

  二、说教法

  学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

  1、教学方法:

  (1)启发引导学生观察、联想、思考、分析、归纳;

  (2)采用“从特殊到一般”、“从具体到抽象”的方法;

  (3)渗透数形结合、分类讨论等数学思想方法。

  (4)用探究性教学、提问式教学和分层教学

  2、教学手段:

  计算机多媒体辅助教学。

  三、说学法

  “授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

  (2)主动式学习:学生自己归纳得出对数函数的图像与性质。

  四、说教程

  1、温故知新

  我通过复习y=log2x和y=log0。5x的图像,让学生熟悉两个具体的对数函数的图像。

  设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

  2、探求新知

  研究对数函数的图像与性质。关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质。

  在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

  设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

  3、课堂研究,巩固应用

  例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解。

  例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况。

  例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

  设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

  4、巩固练习

  使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

  5、课堂小结

  引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

  (1)掌握对数函数的图像与性质,体会数形结合的思想方法;

  (2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

  解法,体会分类讨论的思想方法。

  6、作业:p97习题3,4,5

  选做题6题

  高中数学必修1《对数函数》说课稿 篇6

  一、知识与技能

  1.理解对数函数的概念.

  2.掌握对数函数的性质.了解对数函数在生产实际中的简单应用.

  二、过程与方法

  1.培养学生数学交流能力和与人合作精神.

  2.用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.

  三、情感态度与价值观

  1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.

  2.在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.

  教学重点

  1.对数函数的定义、图象和性质.

  2.对数函数性质的初步应用.

  教学难点

  底数a对对数函数性质的影响.

  教具准备

  多媒体课件、投影仪、作业讲义.

  课时安排

  1课时

  教学过程

  我们已经比较系统地学习了指数和对数这两种运算,请同学们回顾指数幂运算和对数运算的定义并说出这两种运算的本质区别.

  在等式ab=N(a>0,且a≠1,N>0)中,已知底数a和指数b求幂值N就是指数问题,已知底数a和幂值N求指数b就是我们前面刚刚学习过的对数问题,而且无论是求幂值N还是求指数b,结果都有一个.

  在某细胞分裂过程中,细胞个数y是分裂次数x的函数,y=2x,因此,若已知细胞的分裂次数x的值(即输入值是分裂次数x),就能求出细胞个数y的值(即输出值是细胞个数y).这样,就建立起细胞个数y和分裂次数x之间的一个函数关系式.你还记得这个函数模型的类型吗?

  反过来,在等式y=2x中,如果我们知道了细胞个数y,求分裂次数x,这将会是我们研究的哪类问题?

  能否根据等式y=2x把分裂次数x表示出来?

  分裂次数x可以表示为x=log2y.

  在关系式x=log2y中每输入一个细胞个数y的值,是否一定都能得到唯一一个分裂次数x的值?

  师:我们通过研究发现:在关系式x=log2y中,把细胞个数y看作自变量,则每输入一个y值,都能得到唯一一个分裂次数x的值.根据函数的定义,分裂次数x就可以看作是细胞个数y的函数,这样就得到了我们生活中的又一类与指数函数有着密切关系的函数模型

  高中数学必修1《对数函数》说课稿 篇7

  一、教学背景

  1、教材分析

  《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

  2、学情分析

  刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

  基于以上分析,我制定如下教学目标及重、难点:

  3、教学目标

  知识与技能:

  初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

  过程与方法:

  经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

  情感态度与价值观:

  培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

  4、教学重、难点

  重点:

  理解对数函数的概念,掌握对数函数的图象及性质。

  难点:

  由图象探究函数性质,应用性质解决具体问题。

  二、教学方法及手段

  1、教法

  根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

  2、学法

  (1)类比学习:通过指数函数类比学习对数函数。

  (2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

  3、教学手段

  采用多媒体辅助教学。

  三、教学教程

  1、情境引入

  通过银行的复利计算问题,逐步引出对数函数。

  设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

  2、新知探索

  通过上述模型,让学生给对数函数下定义。

  学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

  以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

  例比较下列各组数中两个值的大小:

  (1)log23.4和log28.5;

  (2) log0.33.4和log0.38.5;

  (3) loga3.4和loga8.5(a>0,且a≠1);

  (4) log23.4和log3.42;

  (5) log3.42和log0.38.5。

  3、巩固练习

  (1)比较大小:

  lg6________lg8;ln1.3________

  (2)比较正数m,n的大小:

  若,则m_____n;若,则m_____n.

  4、总结提炼

  (1)自主探究新知识的方法;

  (2)本节课应用了哪些数学思想。

  5、布置作业

  (1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

  (2)教材P74—7、8

  四、板书设计

  2.2.2对数函数及其性质

  一、概念例题

  二、图象

  三、性质

  四、教学反思

【高中数学必修1《对数函数》说课稿】相关文章:

人教版高中数学必修1说课稿11-20

高中数学必修说课稿11-25

高中数学《对数函数的图像与性质》说课稿11-30

高中数学必修5说课稿11-21

高中数学必修五说课稿12-01

高中数学必修三说课稿12-05

高中地理必修1说课稿12-02

高中数学必修一函数的说课稿11-30

高中英语必修1说课稿11-22