高中函数概念说课稿

时间:2021-04-02 14:50:20 高中说课稿 我要投稿

高中函数概念说课稿范文

  作为一无名无私奉献的教育工作者,通常会被要求编写说课稿,说课稿可以帮助我们提高教学效果。优秀的说课稿都具备一些什么特点呢?以下是小编帮大家整理的高中函数概念说课稿范文,仅供参考,欢迎大家阅读。

高中函数概念说课稿范文

  高中函数概念说课稿1

  一、本课时在教材中的地位及作用

  教材采用北师大版(数学)必修1,函数作为初等数学的核心内容,贯穿于整个初等数学体系之中。本章节9个课时,函数这一章在高中数学中,起着承上启下的作用,它是对初中函数概念的承接与深化。在初中,只停留在具体的几个简单类型的函数上,把函数看成变量之间的依赖关系,而高中阶段不仅把函数看成变量之间的依赖关系,更是从“变量说”到“对应说”,这是对函数本质特征的进一步认识,也是学生认识上的一次飞跃。这一章内容渗透了函数的思想,集合的思想以及数学建模的思想等内容,这些内容的学习,无疑对学生今后的学习起着深刻的影响。

  本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用。也为进一步学习函数这一章的其它内容提供了方法和依据。

  二、教学目标

  理解函数的概念,会用函数的定义判断函数,会求一些最基本的函数的定义域、值域。

  通过对实际问题分析、抽象与概括,培养学生抽象、概括、归纳知识以及逻辑思维、建模等方面的能力。

  通过对函数概念形成的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。

  三、重难点分析确定

  根据上述对教材的分析及新课程标准的要求,确定函数的概念既是本节课的重点,也应该是本章的难点。

  四、教学基本思路及过程

  本节课《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。本课(借助小黑板)从集合间的对应来描绘函数概念,起到了上承集合,下引函数的作用,也为进一步学习函数这一章的其它内容提供了方法和依据。

  ⑴学情分析

  一方面学生在初中已经学习了变量观点下的函数定义,并具体研究了几类最简单的函数,对函数已经有了一定的感性认识;另一方面在本书第一章学生已经学习了集合的概念,这为学习函数的现代定义打下了基础。

  函数在初中虽已讲过,不过较为肤浅,本课主要是从两个集合间对应来描绘函数概念,是一个抽象过程,要求学生的抽象、分析、概括的能力比较高,学生学起来有一定的难度,加上学生数学基础较差,理解能力,运算能力等参差不齐等。

  ⑵教法、学法

  1、本节课采用的方法有:

  直观教学法、启发教学法、课堂讨论法。

  2、采用这些方法的理论依据:我一方面精心设计问题情景,引导学生主动探索,另一方面,依据本节为概念学习的特点,以问题的提出、问题的解决为主线,设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程,充分体现“教师为主导,学生为主体”的教学原则。

  3、学法方面,学生通过对新旧两种函数定义的对比,在集合论的观点下初步建构出函数的概念。在理解函数概念的基础上,建构出函数的定义域、值域的概念,并初步掌握它们的求法。

  ⑶教学过程

  (一)创设情景,引入新课

  情景1:提供一张表格,把本班中考得分前10名的情况填入表格,我报名次,学生提供分数。

  情景2:西康高速汽车的行驶速度为80千米/小时,汽车行驶的距离y与行驶时间x之间的关系式为:y=80x

  情景3:安康市一天24小时内的气温随时间变化图:(图略)

  提问(1):这三个例子中都涉及到了几个变化的量?(两个)

  提问(2):当其中一个变量取值确定后,另一个变量将如何?(它的值也随之唯一确定)

  提问(3):这样的关系在初中称之为什么?(函数)引出课题

  [设计意图]在创设本课开头情境1、2的时候,我并没有运用书中的前两个例子。第一个例子我改成提供给学生一张中考成绩统计单。是为了创设和学生生活相近的情境,从而引起学生的兴趣,调节课堂气氛,引人入胜,第二个例子我改成一道简单的速度与时间问题,是因为学生对重力加速度的问题还不是很熟悉。同时这两个例子并没有改变课本用三个实例分别代表三种表示函数方法的意图。

  这样学生可以从熟悉的情景引入,提高学生的参与程度。符合学生的认知特点。

  (二)探索新知,形成概念

  1、引导分析,探求特征

  思考:如何用集合的语言来阐述上述三个问题的共同特征?

  [设计意图]并不急着让学生回答此问,为引导学生改变思路,换个角度思考问题,进入本节课的重点。这里也是教师作为教学的引导者的体现,及时对学生进行指引。

  提问(4):观察上述三问题,它们分别涉及到了哪些集合?(每个问题都涉及到了两个集合,具体略)

  [设计意图]引导学生观察,培养观察问题,分析问题的能力。

  提问(5):两个集合的元素之间具有怎样的关系?(对应)

  及时给出单值对应的定义,并尝试用输入值,输出值的概念来表达这种对应。

  2、抽象归纳,引出概念

  提问(6):现在你能从集合角度说说这三个问题的共同点吗?

  [设计意图]学生相互讨论,并回答,引出函数的概念。训练学生的归纳能力。

  板书:函数的概念

  上述一系列问题,始终倡导学生主动参与,通过不断探究、发现,在师生互动,生生互动中,在学生心情愉悦的氛围中,突破本节课的重点。

  3、探求定义,提出注意

  提问(7):你觉得这个定义中应注意哪些问题(两个非空数集,唯一对应等)?

  [设计意图]剖析概念,使学生抓住概念的本质,便于理解记忆。

  2、例题剖析,强化概念

  例1、判断下列对应是否为函数:

  (1)

  (2)

  [设计意图]通过例1的教学,使学生体会单值对应关系在刻画函数概念中的核心作用。

  例2、(1);

  (2)y=x—1;

  (3);

  (4)

  [设计意图]首先对求函数的定义域进行方法引导,偶次方根必需注意的地方,其次,通过(2)(3)两道题,强调只有对应法则与定义域相同的两个函数,才是相同的函数。而与函数用什么字母表示无关,进一步理解函数符号的本质内涵。

  例3、试求下列函数的定义域与值域:

  (1)

  (2)

  [设计意图]让学体会理解函数的三要素:定义域、值域、对应法则。

  4、巩固练习,运用概念

  书本练习P25:练习1,2,3。P28:练习1,2

  布置作业:A组:1、2。B组1。

  5、课堂小结,提升思想

  引导学生进行回顾,使学生对本节课有一个整体把握,将对学生形成的知识系统产生积极的影响。

  6、板书设计:借助小黑板,时间的合理分配等(略)

  五、教学评价及反思

  我通过对一系列问题情景的设计,让学生在问题解决的过程中体验成功的乐趣,实现对本课重难点的突破,教学时间分配合理,为使课堂形式更加丰富,也可将某些问题改成判断题。在学生分析、归纳、建构概念的过程中,可能会出现理解的偏差,教师应给予恰当的梳理。

  本节课的起始,可以借助于多媒体技术,为学生创设更理想的教学情景(结合各学校的硬件条件)。

  高中函数概念说课稿2

  一、说课内容:

  苏教版九年级数学下册第六章第一节的二次函数的概念及相关习题

  二、教材分析:

  1、教材的地位和作用

  这节课是在学生已经学习了一次函数、正比例函数、反比例函数的基础上,来学习二次函数的概念。二次函数是初中阶段研究的最后一个具体的函数,也是最重要的,在历年来的中考题中占有较大比例。同时,二次函数和以前学过的一元二次方程、一元二次不等式有着密切的联系。进一步学习二次函数将为它们的解法提供新的方法和途径,并使学生更为深刻的理解“数形结合”的重要思想。而本节课的二次函数的概念是学习二次函数的基础,是为后来学习二次函数的图象做铺垫。所以这节课在整个教材中具有承上启下的重要作用。

  2、教学目标和要求:

  (1)知识与技能:使学生理解二次函数的概念,掌握根据实际问题列出二次函数关系式的方法,并了解如何根据实际问题确定自变量的取值范围。

  (2)过程与方法:复习旧知,通过实际问题的引入,经历二次函数概念的探索过程,提高学生解决问题的`能力。

  (3)情感、态度与价值观:通过观察、操作、交流归纳等数学活动加深对二次函数概念的理解,发展学生的数学思维,增强学好数学的愿望与信心。

  3、教学重点:对二次函数概念的理解。

  4、教学难点:由实际问题确定函数解析式和确定自变量的取值范围。

  三、教法学法设计:

  1、从创设情境入手,通过知识再现,孕伏教学过程

  2、从学生活动出发,通过以旧引新,顺势教学过程

  3、利用探索、研究手段,通过思维深入,领悟教学过程

  四、教学过程:

  (一)复习提问

  1.什么叫函数?我们之前学过了那些函数?

  (一次函数,正比例函数,反比例函数)

  2.它们的形式是怎样的?

  (=x+b,≠0;=x,≠0;= , ≠0)

  3.一次函数(=x+b)的自变量是什么?函数是什么?常量是什么?为什么要有≠0的条件?值对函数性质有什么影响?

  【设计意图】复习这些问题是为了帮助学生弄清自变量、函数、常量等概念,加深对函数定义的理解.强调≠0的条件,以备与二次函数中的a进行比较.

  (二)引入新课

  函数是研究两个变量在某变化过程中的相互关系,我们已学过正比例函数,反比例函数和一次函数。看下面三个例子中两个变量之间存在怎样的关系。(电脑演示)

  例1、(1)圆的半径是r(c)时,面积s (c)与半径之间的关系是什么?

  解:s=πr(r>0)

  例2、用周长为20的篱笆围成矩形场地,场地面积()与矩形一边长x()之间的关系是什么?

  解: =x(20/2—x)=x(10—x)=—x+10x (0<x<10)< p="">

  例3、设人民币一年定期储蓄的年利率是x,一年到期后,银行将本金和利息自动按一年定期储蓄转存。如果存款额是100元,那么请问两年后的本息和(元)与x之间的关系是什么(不考虑利息税)?

  解: =100(1+x)

  =100(x+2x+1)

  = 100x+200x+100(0<x<1)< p="">

  教师提问:以上三个例子所列出的函数与一次函数有何相同点与不同点?

  【设计意图】通过具体事例,让学生列出关系式,启发学生观察,思考,归纳出二次函数与一次函数的联系:

  (1)函数解析式均为整式(这表明这种函数与一次函数有共同的特征)。

  (2)自变量的最高次数是2(这与一次函数不同)。

  (三)讲解新课

  以上函数不同于我们所学过的一次函数,正比例函数,反比例函数,我们就把这种函数称为二次函数。

  二次函数的定义:形如=ax2+bx+c (a≠0,a, b, c为常数) 的函数叫做二次函数。

  巩固对二次函数概念的理解:

  1、强调“形如”,即由形来定义函数名称。二次函数即 是关于x的二次多项式(关于的x代数式一定要是整式)。

  2、在 =ax2+bx+c 中自变量是x ,它的取值范围是一切实数。但在实际问题中,自变量的取值范围是使实际问题有意义的值。(如例1中要求r>0)

  3、为什么二次函数定义中要求a≠0 ?

  (若a=0,ax2+bx+c就不是关于x的二次多项式了)

  4、在例3中,二次函数=100x2+200x+100中, a=100, b=200, c=100。

  5、b和c是否可以为零?

  由例1可知,b和c均可为零。

  若b=0,则=ax2+c;

  若c=0,则=ax2+bx;

  若b=c=0,则=ax2。

  注明:以上三种形式都是二次函数的特殊形式,而=ax2+bx+c是二次函数的一般形式。

  【设计意图】这里强调对二次函数概念的理解,有助于学生更好地理解,掌握其特征,为接下来的判断二次函数做好铺垫。

  判断:下列函数中哪些是二次函数?哪些不是二次函数?若是二次函数,指出a、b、c。

  (1)=3(x—1)+1 (2)

  (3)s=3—2t (4)=(x+3)— x

  (5) s=10πr (6) =2+2x

  (8)=x4+2x2+1(可指出是关于x2的二次函数)

  【设计意图】理论学习完二次函数的概念后,让学生在实践中感悟什么样的函数是二次函数,将理论知识应用到实践操作中。

  (四)巩固练习

  1、已知一个直角三角形的两条直角边长的和是10c。

  (1)当它的一条直角边的长为4、5c时,求这个直角三角形的面积;

  (2)设这个直角三角形的面积为Sc2,其中一条直角边为xc,求S关于x的函数关系式。

  【设计意图】此题由具体数据逐步过渡到用字母表示关系式,让学生经历由具体到抽象的过程,从而降低学生学习的难度。

  2、已知正方体的棱长为xc,它的表面积为Sc2,体积为Vc3。

  (1)分别写出S与x,V与x之间的函数关系式子;

  (2)这两个函数中,那个是x的二次函数?

  【设计意图】简单的实际问题,学生会很容易列出函数关系式,也很容易分辨出哪个是二次函数。通过简单题目的练习,让学生体验到成功的欢愉,激发他们学习数学的兴趣,建立学好数学的信心。

  3、设圆柱的高为h(c)是常量,底面半径为rc,底面周长为Cc,圆柱的体积为Vc3

  (1)分别写出C关于r;V关于r的函数关系式;

  (2)两个函数中,都是二次函数吗?

  【设计意图】此题要求学生熟记圆柱体积和底面周长公式,在这儿相当于做了一次复习,并与今天所学知识联系起来。

  4、篱笆墙长30,靠墙围成一个矩形花坛,写出花坛面积(2)与长x之间的函数关系式,并指出自变量的取值范围.

  【设计意图】此题较前面几题稍微复杂些,旨在让学生能够开动脑筋,积极思考,让学生能够“跳一跳,够得到”。

  (五)拓展延伸

  1、已知二次函数=ax2+bx+c,当 x=0时,=0;x=1时,=2;x= —1时,=1.求a、b、c,并写出函数解析式.

  【设计意图】在此稍微渗透简单的用待定系数法求二次函数解析式的问题,为下节课的教学做个铺垫。

  2、确定下列函数中的值

  (1)如果函数= x^2—3+2 +x+1是二次函数,则的值一定是______

  (2)如果函数=(—3)x^2—3+2+x+1是二次函数,则的值一定是______

  【设计意图】此题着重复习二次函数的特征:自变量的最高次数为2次,且二次项系数不为0、

  (六)小结思考:

  本节课你有哪些收获?还有什么不清楚的地方?

  【设计意图】让学生来谈本节课的收获,培养学生自我检查、自我小结的良好习惯,将知识进行整理并系统化。而且由此可了解到学生还有哪些不清楚的地方,以便在今后的教学中补充。

  (七)作业布置:

  必做题:

  1、正方形的边长为4,如果边长增加x,则面积增加,求关于x 的函数关系式。这个函数是二次函数吗?

  2、在长20c,宽15c的矩形木板的四角上各锯掉一个边长为xc的正方形,写出余下木板的面积(c2)与正方形边长x(c)之间的函数关系,并注明自变量的取值范围。

  选做题:

  1、已知函数 是二次函数,求的值。

  2、试在平面直角坐标系画出二次函数=x2和=—x2图象

  【设计意图】作业中分为必做题与选做题,实施分层教学,体现新课标人人学有价值的数学,不同的人得到不同的发展。另外补充第4题,旨在激发学生继续学习二次函数图象的兴趣。

  五、教学设计思考

  以实现教学目标为前提

  以现代教育理论为依据

  以现代信息技术为手段

  贯穿一个原则——以学生为主体的原则

  突出一个特色——充分鼓励表扬的特色

  渗透一个意识——应用数学的意识

  高中函数概念说课稿3

  尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的概念》。

  新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

  一、说教材

  首先谈谈我对教材的理解,《函数的概念》是北师大版必修一第二章2、1的内容,本节课的内容是函数概念。函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中。又是沟通代数、方程、、不等式、数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础。函数学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力。

  二、说学情

  接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,以及逻辑推理能力。所以,学生对本节课的学习是相对比较容易的。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:

  (一)知识与技能

  理解函数的概念,能对具体函数指出定义域、对应法则、值域,能够正确使用“区间”符号表示某些函数的定义域、值域。

  (二)过程与方法

  通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用进一步加深集合与对应数学思想方法。

  (三)情感态度价值观

  在自主探索中感受到成功的喜悦,激发学习数学的兴趣。

  四、说教学重难点

  我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:函数的模型化思想,函数的三要素。本节课的教学难点是:符号“y=f(x)”的含义,函数定义域、值域的区间表示,从具体实例中抽象出函数概念。

  五、说教法和学法

  现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的心理特征与认知规律以问题为主线,我采用启发法、讲授法、小组合作、自主探究等教学方法。

  六、说教学过程

  下面我将重点谈谈我对教学过程的设计。

  (一)新课导入

  首先是导入环节,提问:关于函数你知道什么?在初中阶段对函数是如何下定义的?你能否举一个例子。从而引出本节课的课题《函数概念》。

  利用初中的函数概念进行导入,拉近学生与新知识之间的距离,帮助学生进一步完善知识框架行程知识体系。

  (二)新知探索

  接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、自主探究法等。

  首先利用多媒体展示生活实例

  (1)某山的海拔高度与气温的变化关系;

  (2)汽车匀速行驶,路程和时间的变化关系;

  (3)沸点和气压的变化关系。

  引导学生分析归纳以上三个实例,他们之间有什么共同点,并根据初中所学函数的概念,判断各个实例中的两个变量之间的关系是否为函数关系。

  预设:

  ①都有两个非空数集A、B;

  ②两个数集之间都有一种确定的对应关系;

  ③对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y值和它对应。

  接下来引导学生思考通过对上述实例的共同点并结合课本归纳函数的概念。组织学生阅读课本,在阅读过程中注意思考以下问题

  问题1:函数的概念是什么?初中与高中对函数概念的定义的异同点是什么?符号“x”的含义是什么?

  问题2:构成函数的三要素是什么?

  问题3:区间的概念是什么?区间与集合的关系是什么?在数轴上如何表示区间?

  十分钟过后,组织学生进行全班交流。

  预设:函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B中都存在唯一确定的数f(x)与之对应,那么就把这对应关系f叫作定义在几何A上的函数,记作f:A→B,或y=f(x),x∈A。此时,x叫做自变量,集合A叫做函数的定义域,集合{f(x)▏x∈A}叫作函数的值域。

  函数的三要素包括:定义域、值域、对应法则。

  区间:

  为了使得学生对函数概念的本质了解的更加深入此时进行追问

  追问1:初中的函数概念与高中的函数概念有什么异同点?

  讲解过程中注意强调,函数的本质为两个数集之间都有一种确定的对应关系,而且是一对一,或者多对一,不能一对多。

  追问2:符号“y=f(x)”的含义是什么?“y=g(x)”可以表示函数吗?

  讲解过程中注意强调,符号“y=f(x)”是函数符号,可以用任意的字母表示,f(x)表示与x对应的函数值,一个数不是f与x相乘。

  追问3:对应关系f可以是什么形式?

  讲解过程中注意强调,对应关系f可以是解析式、图象、表格

  追问4:函数的三要素可以缺失吗?指出三个实例中的三要素分别是什么。

  讲解过程中注意强调,函数的三要素缺一不可。

  追问5:用区间表示三个实例的定义域和值域。

  设计意图:在这个过程当中我将课堂完全交给学生,教师发挥组织者,引导者的作用,在运用启发性的原则,学生能够独立思考问题,动手操作,还能在这个过程中和同学之间讨论,加强了学生们之间的交流,这样有利于培养学生们的合作意识和探究能力。

  (三)课堂练习

  接下来是巩固提高环节。

  组织学生自己列举几个生活中有关函数的例子,并用定义加以描述,指出函数的定义域和值域并用区间表示。

  这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。

  (四)小结作业

  在课程的最后我会提问:今天有什么收获?

  引导学生回顾:函数的概念、函数的三要素、区间的表示。

  本节课的课后作业我设计为:

  1、求解下列函数的值

  (1)已知f(x)=5x—3,求发(x)=4。

  (2)已知

  求g(2)。

  2、如图,某灌溉渠道的横截面是等腰梯形,底宽2m,渠深1.8m,边坡的倾角是45°

  (1)试用解析表达式将横截面中水的面积A表示成水深h的函数

  (2)确定函数的定义域和值域

  (3)尝试绘制函数的图象

  这样的设计能让学生理解本节课的核心,并为下节课学习函数的表示方法做铺垫。

  高中函数概念说课稿4

各位专家、各位老师:

  大家好!

  今天我说课的题目是《函数的概念》,本课题是人教A版必修1中1、2的内容,计划安排两个课时,本课时的内容为:函数的概念、三要素及简单函数的定义域及值域的求法。下面我将以“学什么、怎么学、学了有何用”为思路,从教材、教法、学法、教学评价、教学过程设计、板书设计等几个方面对本节课的教学加以说明。

  一、教学目标

  1、课程标准

  课节内容的课标要求是:

  (1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

  (2)在实际情景中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数。

  (3)通过具体实例,了解简单的分段函数,并能简单应用。

  (4)通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

  (5)学会运用函数图像理解和研究函数的性质。

  2、课标解读

  关于函数内容的整体定位和基本要求解读:

  (1)把函数作为刻画现实世界中一类重要变化规律的模型来学习,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型;

  (2)强调对函数本质的认识和理解,因此要求在高中数学学习中多次接触、螺旋上升;

  (3)关注背景、应用、增加了函数模型及其应用;

  (4)削弱和淡化了一些内容,如函数的定义域、值域、反函数、复合函数等;

  (5)注重思想和联系——增加了函数与方程、用二分法求方程的近似根;

  (6)合理地使用信息技术,旨在帮助学生更好地认识和理解函数及其性质。

  【依据意图】

  (1)教材如此要求的根本目的是希望帮助学生更好地从整体上认识和理解函数的本质,而真正理解函数概念是不容易的。因此,不要在过于细枝末节的非本质问题上作过多的训练,有了定义域和对应关系,值域自然就定了。此外,“课标”建议先讲函数再讲映射,也是为了帮助学生把注意力集中在函数的本质理解。

  (2)希望通过方程根与函数零点的内在联系,加强对函数概念、函数思想及函数这一主线在高中数学中的地位作用的认识和理解。并通过用二分法求方程近似根将函数思想以及方程的根与函数零点之间的联系具体化。

  (3)二分法是求方程近似根的常用方法,更为一般、简单,能很好地体现函数思想,“大纲”只是用“三个二”解决根的分布问题。

  (4)现代信息技术不能替代艰苦的学习和人脑精密的思考,信息技术只是作为达到目的的一种手段,一种快速计算的工具。

  3、教材分析

  (1)地位作用

  函数内容是高中数学学习的一条主线,它贯穿整个高中数学学习中,其重要性体现在以下几个方面:

  1、函数是高中数学七大主干知识之一,又是沟通代数﹑方程﹑不等式﹑数列、三角函数、解析几何、导数等内容的桥梁,同时也是今后进一步学习高等数学的基础;

  2、函数的学习过程经历了直观感知、观察分析、归纳类比、抽象概括等思维过程,通过学习可以提高了学生的数学思维能力;

  3、这一节所学习的函数概念既是对初中所学函数概念的一次升华和再认识、对集合语言的一次重要应用;又是以后继续学习函数的性质、数列等等知识的必备理论基础,在函数学习中是承上启下的关键章节。

  (2)内容与课时划分

  本课题是高中数学人教A版必修1中1、2节,计划教学2个课时,第一课时内容包括函数的概念、函数的三要素、简单函数的定义域及值域的求法;第二课时内容为:区间表示、较复杂函数的定义域及值域的求法、分段函数、函数图象等。本节《函数的概念》是函数这一章的起始课。概念是数学的基础,只有对概念做到深刻理解,才能正确灵活地加以应用。

  4、学情分析

  (1)学生在初中已经在初中学习过函数的概念。

  (2)本班级学生个体差异较明显。

  5、教学目标

  【依据意图】:教学目标的设计,要简洁明了,具有较强的可操作性,容易检测目标的达成度,同时也要体现出新课标下对素质教育的要求。基于以上分析作为依据,课时目标分解如下:

  【课时分解目标】

  1、能够列举生活中具有函数关系的实例;

  2、能用集合与对应的语言描述函数的定义,能对具体函数指出定义域、对应法则、值域;

  3、会求一些简单函数(带根号,分式)的定义域和值域;

  4、能够从函数的三要素的角度去判定两个函数是否是同一个函数。

  二、教学重难点

  重点:让学生体会函数是描述变量之间的相互依赖关系的重要数学模型,正确理解形成函数的概念。

  难点:引导学生从具体实例抽象出函数概念。

  [意图依据]:本课时是概念课,重在概念的理解和形成,但教师应把重点放在让学生形成概念的过程中,联系旧知、突破难点、生长新知。为此通过教学目标和难重点的展示,让学生明确本节课的任务及精髓,带着目标去学习,才能达到事半功倍的效果。

  三、教法

  问题式教学法(实例情境、启发引导、合作交流、归纳抽象)

  由于本课题是从集合与对应的角度揭示函数的本质,无论难度还是跨度都有质的飞跃。根据学生的心理特征和认知规律,我通过以问题为主线,以学生为主体,以教师为主导的教学理念。采用一系列的设问、引导、启发、发现,让学生归纳、概括出函数概念的本质,并灵活应用多媒体、黑板呈现、展示、交流。

  [意图依据]:函数的`概念的教学要注重以下几个方面:

  (1)把集合作为一种语言;

  (2)对函数本质的理解不能一步到位,要注重螺旋上升;

  (3)重视信息技术的使用。为此,教师要在课堂上搭建一个平台,通过展示实例、学生举例、典例分析、小结归纳等环节穿插若干问题,引起思考,达成教学目标。

  四、学法

  自主探究、合作交流、展示互评

  我们知道越是基础性的概念,其统摄性就越强,学生从中领悟到的数学就越本质;但事物总有两面性,这些概念的理解和掌握往往难度大、时间长,需要更多的经验积累.因此本节课在学法上我重视学生在列举大量实际背景的前提下对所给出实例观察,类比,归纳,分析,探究,合作,提炼,感悟函数概念的“本来面目”,以此培养学生发现问题、研究问题和分析解决问题的能力;同时在预习环节有学生的自主学习、在互动环节有学生的合作交流、在课后拓展环节有学生的探究学习。这样做,增加了学生主动参与的机会,增强了参与意识,教给学生获取知识的途径以及思考问题的方法,使学生真正成为教学的主体。也只有这样做,才能使学生“学”有所“思”,“思”有所“获”,“获”有所“用”。也恰好能够体现我以“学什么、怎么学、学了有何用”来设计本课题的整体思路。

  [意图依据]:本课时是以问题为主线的教学过程,着重让学生经过对大量实例的剖析、了解、归纳而形成概念。在这个过程中,教师的作用是引导,经过一系列问题的提出、解决让学生在思考、交流的基础上层层深入的理解函数概念。

  五、教学过程设计

  本节内容的教学过程我设计为以下逐层推进六个步骤:

  1、课前预习、生成问题

  2、创境设问、引入课题

  3、观察分析、探索新知

  4、思考辨析、深刻理解

  5、提炼总结、分享收获

  6、布置作业、拓展延伸

【高中函数概念说课稿范文】相关文章:

高中数学《棱锥的概念和性质》说课稿范文01-28

课改下函数概念教育研讨论文10-07

人教版高中数学《函数的最大值和最小值》说课稿范文01-30

初中数学说课稿:反比例函数12-10

高中《经济生活》说课稿范文12-23

高中美术优秀说课稿范文07-01

【精华】高中说课稿范文五篇06-11

高中语文说课稿范文:《劝学》11-26

有关高中说课稿范文合集四篇07-06

【精华】高中说课稿范文合集6篇07-05