有关高中数学说课稿模板六篇
作为一名辛苦耕耘的教育工作者,时常会需要准备好说课稿,说课稿有助于教学取得成功、提高教学质量。怎么样才能写出优秀的说课稿呢?下面是小编帮大家整理的高中数学说课稿6篇,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学说课稿 篇1
一.内容和内容分析
“函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。
二.目标和目标分析
(1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断
简单函数的奇偶性。
(2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊
到一般的数学思想方法.
(3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。
三.教学问题诊断分析
导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。
四.教学支持条件分析
用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。
五.教学过程设计
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:
1.设疑导入、观图激趣:
使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。
2.指导观察、形成概念:
作出函数y=x的图象,并观察这两个函数图象的对称性如何?
借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:
函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2
偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。
3.学生探索、发展思维。
接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:
(1)求出函数的定义域,并判断是否关于原点对称
(2)验证f(-x)=f(x)或f(-x)=-f(x)
(3)得出结论
由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。
4.布置作业:
六.目标检测设计
学案上的题型主要包括奇偶性函数的判断及应用
七.教学反思:(从两方面)
1.思成功
一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,
听别人怎样介绍,也学到了知识.
2.思不足
学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用
学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。
语言组织:
在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。
教学环节(的完整):
在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。
以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。
高中数学说课稿 篇2
一、教学目标
(一)知识与技能
1、进一步熟练掌握求动点轨迹方程的基本方法。
2、体会数学实验的直观性、有效性,提高几何画板的操作能力。
(二)过程与方法
1、培养学生观察能力、抽象概括能力及创新能力。
2、体会感性到理性、形象到抽象的思维过程。
3、强化类比、联想的方法,领会方程、数形结合等思想。
(三)情感态度价值观
1、感受动点轨迹的动态美、和谐美、对称美。
2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气。
二、教学重点与难点
教学重点:运用类比、联想的方法探究不同条件下的轨迹。
教学难点:图形、文字、符号三种语言之间的过渡。
三、、教学方法和手段
教学方法:观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。
教学手段:利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。
教学模式:重点中学实施素质教育的课堂模式“创设情境、激发情感、主动发现、主动发展”。
四、教学过程
1、创设情景,引入课题
生活中我们四处可见轨迹曲线的影子。
演示:这是美丽的城市夜景图。
演示:许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多。
演示建筑中也有许多美丽的轨迹曲线。
设计意图:让学生感受数学就在我们身边,感受轨迹,曲线的动态美、和谐美、对称美,激发学习兴趣。
2、激发情感,引导探索
靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1。
高中数学说课稿 篇3
高中数学说课稿模板
课题:_________________________(说课稿)
一、说教材:
1、地位、作用和特点:
《________________》是高中数学课本第______册(____修)的第____章“________”的第______节内容。
本节是在学习了___________________________________之后编排的。通过本节课的学习,既可以对_____________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究_________________________有着密切的联系,因此学习这部分有着广泛的现实意义。本节的特点之一是:____________________; 特点之二是:_________________。
2、教学目标:
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
(1)知识目标:A、B、C
(2)能力目标:A、B、C
(3)德育目标:A、B
3、教学的重点和难点:
(1)教学重点:
(2)教学难点:
二、说教法:
基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:
三、说学法:
学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。
1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。
本节教师通过列举具体事例来进行分析,归纳出________________________,并依据此知识与具体事例结合、推导出___________________________,这正是一个分析和推理的全过程。
2、让学生亲自经历运用科学方法探索的过程。_主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授________________时,可通过_____________演示,创设探索______________规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。
3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。
4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。
四、教学过程:
(一)、课题引入:
教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。
(二)、新课教学:
1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。
2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。
(三)、实施反馈:
1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。
2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。
五、板书设计:
在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。
六、说课综述:
以上是我对《___________》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的_________________知识,并把它运用到对______________ 的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。
____总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。
高中数学说课稿 篇4
一.说教材
1.1 教材结构与内容简析
本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。
函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。
1.2 教学目标
1.2.1知识目标
⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。
⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。
⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。
1.2.2能力目标
⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。
⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学
地解决问题。
⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。
1.2.3情感目标
培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。
1.3 教材重点和难点处理思路
重点:函数图象的平移变换规律及应用
难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数
教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”
为了突出重点、突破难点,在教学中采取了以下策略:
⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。
⑶、数学实验采取小组合作研究共同完成简单实验报告的形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。
二.说教法
针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。
本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。
另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。
总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。
三.说学法
“学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。
美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。
教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。
四.说程序
4.1创设情境,引入课题
在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”
引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。
从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。
4.2数学实验,自主探索
这一环节主要分两阶段。
1、尝试初探
引例、函数 与 图象间的关系
这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。
讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。
2、实验发现
本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。
函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论
高中数学说课稿 篇5
一、本节内容的地位与重要性
"分类计数原理与分步计数原理"是《高中数学》一节独特内容。这一节课与排列、组合的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。
二、关于教学目标的确定
根据两个基本原理的地位和作用,我认为本节课的教学目标是:
(1)使学生正确理解两个基本原理的概念;
(2)使学生能够正确运用两个基本原理分析、解决一些简单问题;
(3)提高分析、解决问题的能力
(4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。
三、关于教学重点、难点的选择和处理
中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点内容。
正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,面对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生接受概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。
四、关于教学方法和教学手段的选用
根据本节课的内容及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。
启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生通过主动思考、动手操作来达到对知识的"发现"和接受,进而完成知识的内化,使书本的知识成为自己的知识。
电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,可以极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,可以将教师的思路和策略以软件的形式来体现,更好地为教学服务。
五、关于学法的指导
"授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而达到教学的目标。教学中,教师创设疑问,学生想办法解决疑问,通过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,符合学生认知水平,培养了学习能力。
六、关于教学程序的设计
(一)课题导入
这是本章的第一节课,是起始课,讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章内容的独特性,从应用的广泛看学习本章内容的重要性。同时板书课题(分类计数原理与分步计数原理)
这样做,能使学生明白本节内容的地位和作用,激发其学习新知识的.欲望,为顺利完成教学任务做好思维上的准备。
(二)新课讲授
通过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都可以独立地把从甲地到乙地这件事办好。
紧跟着给出:
引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不同的走法?
引伸2:若完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不同方法?
这个问题的两个引申由渐入深、循序渐进为学生接受分类计数原理做好了准备。
板书分类计数原理内容:
完成一件事,有 类办法。在第1类办法中有 种不同方法,在第2类办法中有 种不同的方法,……,在第 类办法中有 种不同方法,那么完成这件事共有 种不同的方法。(也称加法原理)
此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(1)各分类之间相互独立,都能完成这件事;
(2)根据问题的特点在确定的分类标准下进行分类;
(3)完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法。
这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。
接下来给出问题2:(出示幻灯片)
由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不同的走法?
提出问题:问题1与问题2同是研究从甲地到乙地的不同走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都可以从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。
问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不同的颜色闪现出六种不同的走法,让学生列式求出不同走法数,并列举所有走法。
归纳得出:分步计数原理(板书原理内容)
分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法。那么,完成这件事共有
N=m1×m2×…×mn
种不同的方法。
同样趁学生对定理有一定的认识,引导学生分析分步计数原理内容,启发总结得下面三点注意:(出示幻灯片)
(1) 各步骤相互依存,只有各个步骤完成了,这件事才算完成;
(2) 根据问题的特点在确定的分步标准下分步;
(3) 分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。
(三)应用举例
教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。
例2:由数字0,1,2,3,4可以组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:
(1) 每一个三位数是由什么构成的?(三个整数字)
(2) 023是一个三位数吗?(百位上不能是0)
(3) 组成一个三位数需要怎么做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)
(4) 怎样表述?
教师巡视指导、并归纳
解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到可以组成的三位整数的个数是N=4×5×5=100.
答:可以组成100个三位整数。
(教师的连续发问、启发、引导,帮助学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。
教师在第二个例题中给出板书示范,能帮助学生进一步加深对两个基本原理实质的理解,周密的考虑,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的形成有着积极的促进作用,也可以为学生后面应用两个基本原理解排列、组合综合题打下基础)
(四)归纳小结
师:什么时候用分类计数原理、什么时候用分步计数原理呢?
生:分类时用分类计数原理,分步时用分步计数原理。
师:应用两个基本原理时需要注意什么呢?
生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。
(五)课堂练习
P222:练习1~4.学生板演第4题
(对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)
(六)布置作业
P222:练习5,6,7.
补充题:
1.在所有的两位数中,个位数字小于十位数字的共有多少个?
(提示:按十位上数字的大小可以分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)
2.某学生填报高考志愿,有m个不同的志愿可供选择,若只能按第一、二、三志愿依次填写3个不同的志愿,求该生填写志愿的方式的种数。
(提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)
3.在所有的三位数中,有且只有两个数字相同的三位数共有多少个?
(提示:可以用下面方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9×9种,共有9×9+9×9+9×9=3×9×9=243个只有两个数字相同的三位数)
4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不同的选法?
(提示:由于8+5=13>10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5×2+5×3+2×3)
只要大家用心学习,认真复习,就有可能在高中的战场上考取自己理想的成绩。
高中数学说课稿 篇6
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。
五、教学方法
本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。
3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
七、教学过程:
1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。
2、引入新课:
(1)平行四边形法则的引入。
学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。
设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。
(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。
所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。
这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。
设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。
(3)共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大
的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。
反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则 通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。
设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。
(4)向量加法的运算律
①交换律:交换律是利用平行四边形法则的图形,又结合三角
形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。
(1)平行四边形法则:起点相同,适用于不共线向量的求和。
(2)三角形法则首尾相接,适用于任意多个向量的求和。
(3)运算律
【有关高中数学说课稿模板六篇】相关文章:
有关高中数学说课稿模板集合八篇08-02
有关高中数学说课稿模板汇编五篇07-30
有关高中数学说课稿模板集锦10篇07-28
有关高中数学说课稿模板集合9篇07-27
有关高中数学说课稿模板集合6篇07-25
有关高中数学说课稿模板集锦7篇07-24
有关高中数学说课稿模板合集8篇07-23
有关高中数学说课稿模板集合六篇07-20
有关高中数学说课稿模板汇编八篇07-02