高中数学说课稿

时间:2021-08-15 13:14:20 高中说课稿 我要投稿

实用的高中数学说课稿范文汇总8篇

  作为一名教师,常常要写一份优秀的说课稿,借助说课稿可以提高教学质量,取得良好的教学效果。我们应该怎么写说课稿呢?下面是小编为大家整理的高中数学说课稿8篇,欢迎阅读与收藏。

实用的高中数学说课稿范文汇总8篇

高中数学说课稿 篇1

  各位老师:

  大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用

  本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。

  2、教学的重点和难点

  重点:概率的加法公式及其应用;事件的关系与运算。

  难点:互斥事件与对立事件的区别与联系

  二、教学目标分析

  1.知识与技能目标

  ⑴了解随机事件间的基本关系与运算;

  ⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

  2、过程与方法:

  ⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;

  ⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

  3、情感态度与价值观:

  通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

  三、教法分析

  采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

  四、教学过程分析

  1、创设情境,引入新课

  在掷骰子的试验中,我们可以定义许多事件,如:

  c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜

  c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜

  c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜

  D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜

  D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜

  f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜

  H=﹛出现的点数为奇数﹜

  ⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

  ⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。

  「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算

  2、探究新知

  ㈠事件的关系与运算

  ⑴经过上面的思考,我们得出:

  试验的可能结果的全体←→全集

  ↓↓

  每一个事件←→子集

  这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

  集合的并→两事件的并事件(和事件)

  集合的交→两事件的交事件(积事件)

  在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。

  (例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)

  「设计意图」为更好地理解互斥事件和对立事件打下基础,

  ⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?

  ②在掷骰子实验中事件G和事件H是否一定有一个会发生?

  「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。

  ⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。

  ⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。

  ㈡概率的基本性质:

  ⑴回顾:频率=频数/试验的次数

  我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、

  (通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)

  3、典型例题探究

  例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

  事件A:命中环数大于7环;事件B:命中环数为10环;

  事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、

  分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚

  例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:

  (1)取到红色牌(事件c)的概率是多少?

  (2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).

  「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。

  4、课堂小结

  ⑴理解事件的关系和运算

  ⑵掌握概率的基本性质

  「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

  5、布置作业

  习题3、1A1、3、4

  「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  五、板书设计

  概率的基本性质

  一、事件间的关系和运算

  二、概率的基本性质

  三、例1的板书区

  例2的板书区

  四、规律性质总结

高中数学说课稿 篇2

  一、教材分析

  本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。

  从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。

  二、教学目标

  根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:

  知识与技能:

  1. 知道最小二乘法和回归分析的思想;

  2. 能根据线性回归方程系数公式求出回归方程

  过程与方法:

  经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。

  情感态度与价值观

  通过合作学习,养成倾听别人意见和建议的良好品质

  三、重点难点分析:

  根据目标分析,确定教学重点和难点如下:

  教学重点:

  1. 知道最小二乘法和回归分析的思想;

  2.会求回归直线

  教学难点:

  建立回归思想,会求回归直线

  四、教学设计

  提出问题

  理论探究

  验证结论

  小结提升

  应用实践

  作业设计

  教学环节

  内容及说明

  创设情境

  探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:

  问题与引导设计

  师生活动

  设计意图

  问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?

  教师提问,学生

  通过动手操作得

  出散点图并回答

  以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。

  教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.

  问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,

  乙,丙三个同学的判断有什么看法?

  学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一

  该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。

  问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多

  在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题

  通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。

  学生可能提出的问题:

  ①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?

  ②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?

  ③这些样本数据揭示出两个相关变量之间怎样的关系呢?

  ④怎样用数学的`方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果

高中数学说课稿 篇3

  说课目标

  (1)知识目标:掌握抛物线的定义,掌握抛物线的四种标准方程形式,及其对应的焦点、准线。

  (2)能力目标:通过对抛物线概念和标准方程的学习,培养学生分析和概括的能力,提高建立坐标系的能力,由圆锥曲线的统一定义,形成学生对事物运动变化、对立、统一的辨证唯物主义观点。

  (3)德育目标:通过抛物线概念和标准方程的学习,培养学生勇于探索、严密细致的科学态度,通过提问、讨论、思考等教学活动,调动学生积极参与教学,培养良好的学习习惯。

  教学重点:(1)抛物线的定义及焦点、准线;

  (2)利用坐标法求出抛物线的四种标准方程;

  (3)会根据抛物线的焦点坐标,准线方程求抛物线的标准方程。

  教学难点:(1)抛物线的四种图形及标准方程的区分;

  (2)抛物线定义及焦点、准线等知识的灵活运用。

  说课方法:启发引导法(通过椭圆与双曲线第二定义引出抛物线)。

  依据建构主义教学原理,通过类比、归纳把新知识化归到原有的认知结构中去(二次函数与抛物线方程的对比,移图与建立适当建立坐标系的方法的归纳)。

  利用多媒体教学

  说课过程:

  一、课题引入

  利用学生已有知识提问学生:1、椭圆的第二种定义:到定点与到定直线的距离的比是小于1的常数的点的轨迹是椭圆。(用课件演示)

  2、双曲线的第二种定义:到定点与到定直线的距离的比是大于1的常数的点的轨迹是双曲线。(用课件演示)

  由此引出:到定点的距离和到定直线的距离的比是等于1的常数的点的轨迹

  是什么?

  (以问题为出发点,创设情景,提高学生求知欲)

  教师用直尺、三角板和细绳演示,学生观察所得曲线。

  从而引出本节课的学习内容。

  二、讲授新课

  1.对抛物线的初步认识

  物理中抛物线的运动轨迹;数学中二次函数的图象;生活中抛物线的实例(图片显示)等。

  2.抛物线的定义

  3.抛物线标准方程的推导:①学生回顾求曲线方程的步骤(建系、设点、列方程);

  ②若焦点F和准线的距离为()这样建立坐标系?由学生思考:可能出现的结果:

  四、课堂小结

  1、本节课的内容:抛物线的定义,焦点、准线的意义及四种标准方程;

  2、理解参数的几何意义(焦准距)

  3、利用坐标法求曲线方程是坐标系的适当选取。

  课后作业:119页习题8.52,4

  设计说明:学生在初中学习二次函数时知道二次函数的图象是一个抛物线,在物理的学习中也接触过抛物线(物体的运动轨迹)。因而对抛物线的认识比对前面学习的两种圆锥曲线椭圆和双曲线更多。所以学生学起来会轻松。但是要注意的是,现在所学的抛物线是方程的曲线而不是函数的图象。本节内容是在学习了椭圆和双曲线的基础上,利用圆锥曲线的第二定义统一进行展开的,因而对于抛物线的系统学习具有双重的目标性。

  抛物线作为点的轨迹,其标准方程的推导过程充满了辨证法,处处是数与形之间的对照和相互转化。而要得到抛物线的标准方程,必须建立适当的坐标系,还要依赖焦点和准线的相互位置关系,这是抛物线标准方程有四种而不象椭圆和双曲线只有两种形式。因而抛物线的标准方程的推导也是培养辨证唯物主义观点的好素材。

  利用圆锥曲线第二定义通过类比方法,引导学生观察和对比,启发学生猜想与概括,利用建立坐标系求出抛物线的四种标准方程,让每一个学生都能动手,动口,动脑参与教学过程,真正贯彻“教师为主导,学生为主体”的教学思想。对于标准方程中的参数及其几何意义,焦点坐标和准线方程与的关系是本节课的重点内容,必须让学生掌握如何根据标准方程求、焦点坐标、准线方程或根据后三者求抛物线的标准方程。特别对于一些有关距离的问题,要能灵活运用抛物线的定义给予解决。

  当前素质教育的主流是培养学生的能力,让学生学会学习。本节课采用学生通过探索、观察、对比分析,自己发现结论的学习方法,培养了学生逻辑思维能力,动手实践能力以及探索的精神。

高中数学说课稿 篇4

  各位老师:

  大家好!

  我叫***,来自**。我说课的题目是《简单随机抽样》,内容选自于新课程人教A版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、和教学过程分析等四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  "简单随机抽样"是"随机抽样"的基础,"随机抽样"又是"统计学"的基础,因此,在"统计学"中,"简单随机抽样"是基础的基础。在初中学生已学过相关概念,如"抽样""总体"、"个体"、"样本"、"样本容量"等,具有一定基础,新教材把"统计"这部分内容编入必修部分,突出了统计在日常生活中的应用,体现它在中学数学中的地位,但同时也给学生学习增加了难度。

  2教学的重点和难点

  重点:掌握简单随机抽样常见的两种方法(抽签法、随机数表法)

  难点:理解简单随机抽样的科学性,以及由此推断结论的可靠性

  二、教学目标分析

  1.知识与技能目标:

  正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;

  2.过程与方法目标:

  (1)能够从现实生活或其他学科中提出具有一定价值的统计问题;

  (2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

  3.情感,态度和价值观目标

  通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性

  三、教学方法与手段分析

  为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学,并对学生渗透"从特殊到一般"的学习方法,由于本节课内容实例多,信息容量大,文字多,我采用多媒体辅助教学,节省时间,提高教学效率,另外采用这种形式也可强化学生感观刺激,也能大大提高学生的学习兴趣。

  四、教学过程分析

  (一)设置情境,提出问题

  例1:请问下列调查是"普查"还是"抽样"调查?

  A、一锅水饺的味道B、旅客上飞机前的安全检查

  c、一批炮弹的杀伤半径D、一批彩电的质量情况

  E、美国总统的民意支持率

  学生讨论后,教师指出生活中处处有"抽样"

  「设计意图」生活中处处有"抽样"调查,明确学习"抽样"的必要性。

  (二)主动探究,构建新知

  例2:语文老师为了了解某班同学对某首诗的背诵情况,应采用下列哪种抽查方式?为什么?

  A、在班级12名班委名单中逐个抽查5位同学进行背诵

  B、在班级45名同学中逐一抽查10位同学进行背诵

  先让学生分析、选择B后,师生一起归纳其特征:

  (1)不放回逐一抽样,

  (2)抽样有代表性(个体被抽到可能性相等),学生体验B种抽样的科学性后,教师指出这是简单随机抽样,并复习初中讲过的有关概念,最后教师补充板书课题--(简单随机)抽样及其定义。

  「设计意图」例2从正面分析简单随机抽样的科学性、公平性,突出"等可能性"特征。这是突破教学难点的重要环节之一。

  例3我们班有44名学生,现从中抽出5名学生去参加学生座谈会,要使每名学生的机会均等,我们应该怎么做?谈谈你的想法。

  先让学生独立思考,然后分小组合作学习,最后各小组推荐一位同学发言,最后师生一起归纳"抽签法"步骤:

  (1)编号制签

  (2)搅拌均匀

  (3)逐个不放回抽取n次。教师板书上面步骤。

  「设计意图」在自主探究,合作交流中构建新知,体验"抽签法"的公平性,从而突破难点,突出重点。

  请一位同学说说例2采用"抽签法"的实施步骤。

  「设计意图」

  1、反馈练习,落实知识点,突出重点。

  2、体会"抽签法"具有"简单、易行"的优点。

  〈屏幕出示〉

  例4、假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验

  提问:这道题适合用抽签法吗?

  让学生进行思考,分析抽签法的局限性,从而引入随机数表法。教师出示一份随机数表,并介绍随机数表,强调数表上的数字都是随机的,各个数字出现的可能性均等,结合上例让学生讨论随机数表法的步骤,最后师生一起归纳步骤:

  (1)编号

  (2)在随机数表上确定起始位置

  (3)取数。教师板书上面步骤。

  请一位同学说说例2采用"随机数表法"的实施步骤。

  「设计意图」

  1、体会随机数表法的科学性

  2、体会随机数表法的优越性:避免制签、搅拌。

  3、反馈练习,落实知识点,突出重点。

  ㈢课堂小结:

  1.简单随机抽样及其两种方法

  2.两种方法的操作步骤

  (采用问答形式)

  「设计意图」通过小结使学生们对知识有一个系统的认识,突出重点,抓住关键,培养概括能力。

  ㈣布置作业

  课本练习2、3

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。

高中数学说课稿 篇5

  各位评委:下午好!

  我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。

  一、教材分析

  (一)教材的地位和作用

  《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。

  (二)、学情分析

  通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:

  知识层面:学生在已初步掌握了 。

  能力层面:学生在初步已经掌握了用

  初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.

  (三)教学课时

  本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)

  二、教学目标分析

  根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:

  知识与技能:

  过程与方法:

  情感态度:

  (例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)

  在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。

  三、重难点分析

  重点确定为:

  要把握这个重点。关键在于理解

  其本质就是

  本节课的难点确定为:

  要突破这个难点,让学生归纳

  作铺垫。

  四、教法与学法分析

  (一)学法指导

  教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

  (二)教法分析

  本节课设计的指导思想是:现代认知心理学--建构主义学习理论。

  建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

  本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。

  五、说教学过程

  本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

  (一)创设情景………………….

  (二)比旧悟新………………….

  (三)归纳提炼…………………

  (四)应用新知,熟练掌握 …………………

  (五)总结…………………

  (六)作业布置…………………

  (七)板书设计…………………

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢

  著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?

高中数学说课稿 篇6

  敬的各位专家、评委:

  下午好!

  我的抽签序号是____,今天我说课的课题是《_______》第__课时。

  我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

  一、教材分析

  (一)地位与作用

  ______是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面______;另一方面______。同时,__________________。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解_______,初步掌握______。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,______;能运用____解决简单的问题;使学生领会______的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在______的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和__学生的年龄特征,按照__市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力。

  四、教学过程分析

  (一)教学过程设计

  教学是一个教师的“导”,学生的“学”以及教学过程中的“悟”构成的和谐整体。教师的“导”也就是教师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。如果在教学过程中把“教与学”完美的结合也就是以“问题”为核心,通过对知识的发生、发展和运用过程的演绎、解释和探究来组织和推动教学。

  (1)创设情境,提出问题。

  新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。

  (2)引导探究,建构概念。

  数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历“数学化”、“再创造”的活动过程.

  (3)自我尝试,初步应用。

  有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.

  (4)当堂训练,巩固深化。

  通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。

  (5)小结归纳,回顾反思。

  小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些知识?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你掌握了哪些技能?

  (二)作业设计

  作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

  我设计了以下作业:

  (1)必做题

  (2)选做题

  (三)板书设计

  板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

  五、评价分析

  学生学习的结果评价当然重要,但是更重要的是学生学习的过程评价。我采用及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对____是否有一个完整的集训,并进行及时的调整和补充。

  以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

  谢谢!

高中数学说课稿 篇7

  一、教学背景分析

  1、教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

  2、学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3、教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题。

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识。

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣。

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4、教学重点与难点

  (1)重点:圆的标准方程的求法及其应用。

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题。

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  二、教法学法分析

  1、教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。

  2、学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。

  下面我就对具体的教学过程和设计加以说明:

  三、教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图。

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究——获得新知

  问题二 1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2、如果圆心在,半径为时又如何呢?

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

  (三)应用举例——巩固提高

  I、直接应用 内化新知

  问题三 1、写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点。

  2、写出圆的圆心坐标和半径。

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

  II、灵活应用 提升能力

  问题四 1、求以点为圆心,并且和直线相切的圆的方程。

  2、求过点,圆心在直线上且与轴相切的圆的方程。

  3、已知圆的方程为,求过圆上一点的切线方程。

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

  III、实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

  (四)反馈训练——形成方法

  问题六 1、求过原点和点,且圆心在直线上的圆的标准方程。

  2、求圆过点的切线方程。

  3、求圆过点的切线方程。

  接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

  (五)小结反思——拓展引申

  1、课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法

  ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:。

  ②已知圆的方程是,经过圆上一点的切线的方程是:。

  2、分层作业

  (A)巩固型作业:教材P81-82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

  3、激发新疑

  问题七 1、把圆的标准方程展开后是什么形式?

  2、方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计:

  横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

高中数学说课稿 篇8

  一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二.目标分析:

  教学重点.难点

  重点:集合的含义与表示方法.

  难点:表示法的恰当选择.

  教学目标

  l.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性.互异性.无序性;

  (4)会用集合语言表示有关数学对象;

  2.过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

  (2)让学生归纳整理本节所学知识.

  3.情感.态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性.

  三.教法分析

  1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.

  2.教学手段:在教学中使用投影仪来辅助教学.

  四.过程分析

  (一)创设情景,揭示课题

  1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流.与此同时,教师对学生的活动给予评价.

  2.活动:(1)列举生活中的集合的例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在xxxx年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学xxxx年9月入学的高一学生的全体.

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.

  一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

  4.教师指出:集合常用大写字母A,B,c,D,...表示,元素常用小写字母...表示.

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流.

  让学生充分发表自己的建解.

  3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.[来源:Z,xx,k.com]

  如果是集合A的元素,就说属于集合A,记作.

  如果不是集合A的元素,就说不属于集合A,记作.

  (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

  (3)让学生完成教材第6页练习第1题.

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

  6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题.

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

  (五)归纳小结,布置作业[来源:Zxxk.com]

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题.

  2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材.

  五.板书分析

  PPT

  集合的含义与表示

  定义例1

  集合×××××××

  ××××××××××××××

  元素×××××××

  ×××××××例2

  元素与集合的关系×××××××

  ××××××××××××××

  作业××××××××××××××

【实用的高中数学说课稿范文汇总8篇】相关文章:

实用的高中数学说课稿范文汇总八篇08-20

实用的高中数学说课稿范文汇总7篇08-19

实用的高中数学说课稿范文汇总10篇08-19

实用的高中数学说课稿范文汇总5篇08-18

实用的高中数学说课稿范文汇总9篇08-18

实用的高中数学说课稿范文汇总6篇08-18

实用的高中数学说课稿范文汇总五篇08-16

实用的高中数学说课稿范文汇总九篇06-26

实用的高中数学说课稿汇总八篇07-31