高中数学说课稿

时间:2021-08-20 11:31:08 高中说课稿 我要投稿

有关高中数学说课稿范文汇编七篇

  作为一名教职工,编写说课稿是必不可少的,借助说课稿我们可以快速提升自己的教学能力。那么应当如何写说课稿呢?以下是小编整理的高中数学说课稿7篇,欢迎大家分享。

有关高中数学说课稿范文汇编七篇

高中数学说课稿 篇1

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)线段 (D)不存在

  (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)2

  5这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5

  入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。

  (二)理解定义、解决问题

  例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2), 求|PA|

  七、教学反思

  1.本课将借助于“XXX”,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2.利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法. 循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题.而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学说课稿 篇2

  今天我说课的内容是高二立体几何(人教版)第九章第二章节第八小节《棱锥》的第一课时:《棱锥的概念和性质》。下面我就从教材分析、教法、学法和教学程序四个方面对本课的教学设计进行说明。

  一、说教材

  1、本节在教材中的地位和作用:

  本节是棱柱的后续内容,又是学习球的必要基础。第一课时的教学目的是让学生掌握棱锥的一些必要的基础知识,同时培养学生猜想、类比、比较、转化的能力。著名的生物学家达尔文说:“最有价值的知识是关于方法和能力的知识”,因此,应该利用这节课培养学生学习方法、提高学习能力。

  2. 教学目标确定:

  (1)能力训练要求

  ①使学生了解棱锥及其底面、侧面、侧棱、顶点、高的概念。

  ②使学生掌握截面的性质定理,正棱锥的性质及各元素间的关系式。

  (2)德育渗透目标

  ①培养学生善于通过观察分析实物形状到归纳其性质的能力。

  ②提高学生对事物的感性认识到理性认识的能力。

  ③培养学生“理论源于实践,用于实践”的观点。

  3. 教学重点、难点确定:

  重 点:1.棱锥的截面性质定理 2.正棱锥的性质。

  难 点:培养学生善于比较,从比较中发现事物与事物的区别。

  二、说教学方法和手段

  1、教法:

  “以学生参与为标志,以启迪学生思维,培养学生创新能力为核心”。

  在教学中根据高中生心理特点和教学进度需要,设置一些启发性题目,采用启发式诱导法,讲练结合,发挥教师主导作用,体现学生主体地位。

  2、教学手段:

  根据《教学大纲》中“坚持启发式,反对注入式”的教学要求,针对本节课概念性强,思维量大,整节课以启发学生观察思考、分析讨论为主,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、积极探索。

  三、说学法:

  这节课的核心是棱锥的截面性质定理,.正棱锥的性质。教学的指导思想是:遵循由已知(棱柱)探究未知(棱锥)、由一般(棱锥)到特殊(正棱锥)的认识规律,启发学生反复思考,不断内化成为自己的认知结构。

  四、 学程序:

  [复习引入新课]

  1.棱柱的性质:

  (1)侧棱都相等,侧面是平行四边形

  (2)两个底面与平行于底面的截面是全等的多边形

  (3)过不相邻的两条侧棱的截面是平行四边形

  2.几个重要的四棱柱:

  平行六面体、直平行六面体、长方体、正方体

  思考:如果将棱柱的上底面给缩小成一个点,那么我们得到的将会是什么样的体呢?

  [讲授新课]

  1、棱锥的基本概念

  (1).棱锥及其底面、侧面、侧棱、顶点、高、对角面的概念

  (2).棱锥的表示方法、分类

  2、棱锥的性质

  (1). 截面性质定理:

  如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  已知:如图(略),在棱锥S-AC中,SH是高,截面A’B’C’D’E’平行于底面,并与SH交于H’。

  证明:(略)

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥

  的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  (2).正棱锥的定义及基本性质:

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  ①各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高相等,它们叫做正棱锥的斜高;

  ②棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;

  棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申:

  ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  (3)正棱锥的各元素间的关系

  下面我们结合图形,进一步探讨正棱锥中各元素间的关系,为研究方便将课本 图9-74(略)正棱锥中的棱锥S-OBM从整个图中拿出来研究。

  引申:

  ①观察图中三棱锥S-OBM的侧面三角形状有何特点?

  (可证得∠SOM =∠SOB =∠SMB =∠OMB =900,所以侧面全是直角三角形。)

  ②若分别假设正棱锥的高SO= h,斜高SM= h’,底面边长的一半BM= a/2,底面正多边形外接圆半径OB=R,内切圆半径OM= r,侧棱SB=L,侧面与底面的二面角∠SMO= α ,侧棱与底面组成的角 ∠SBO= β, ∠BOM=1800/n (n为底面正多边形的边数)请试通过三角形得出以上各元素间的关系式。

  (课后思考题)

  [例题分析]

  例1.若一个正棱锥每一个侧面的顶角都是600,则这个棱锥一定不是( )

  A.三棱锥 B.四棱锥 C.五棱锥 D.六棱锥

  (答案:D)

  例2.如图已知正三棱锥S-ABC的高SO=h,斜高SM=L,求经过SO的中点且平行于底面的截面△A’B’C’的面积。

  ﹙解析及图略﹚

  例3.已知正四棱锥的棱长和底面边长均为a,求:

  (1)侧面与底面所成角α的余弦(2)相邻两个侧面所成角β的余弦

  ﹙解析及图略﹚

  [课堂练习]

  1、 知一个正六棱锥的高为h,侧棱为L,求它的底面边长和斜高。

  ﹙解析及图略﹚

  2、 锥被平行与底面的平面所截,若截面面积与底面面积之比为1∶2,求此棱锥的高被分成的两段(从顶点到截面和从截面到底面)之比。

  ﹙解析及图略﹚

  [课堂小结]

  一:棱锥的基本概念及表示、分类

  二:棱锥的性质

  截面性质定理:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比

  引申:如果棱锥被平行于底面的平面所截,则截得的小棱锥与已知棱锥的侧面积比也等于它们对应高的平方比、等于它们的底面积之比。

  2.正棱锥的定义及基本性质

  正棱锥的定义:

  ①底面是正多边形

  ②顶点在底面的射影是底面的中心

  (1)各侧棱相等,各侧面是全等的等腰三角形;各等腰三角形底边上的高

  相等,它们叫做正棱锥的斜高;

  (2)棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成一个直角三角形

  引申: ①正棱锥的侧棱与底面所成的角都相等;

  ②正棱锥的侧面与底面所成的二面角相等;

  ③正棱锥中各元素间的关系

  [课后作业]

  1:课本P52 习题9.8 : 2、 4

  2:课时训练:训练一

高中数学说课稿 篇3

  一、教学目标

  1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.

  2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程.领悟直角坐标系的工具功能,丰富数形结合的经验.

  3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.

  4.培养学生求真务实、实事求是的科学态度.

  二、重点、难点、关键

  重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.

  难点:把三角函数理解为以实数为自变量的函数.

  关键:如何想到建立直角坐标系;六个比值的确定性(α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).

  三、教学理念和方法

  教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.

  根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用"启发探索、讲练结合"的方法组织教学.

  四、教学过程

  [执教线索:

  回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)--问题情境:能推广到任意角吗?--它山之石:建立直角坐标系(为何?)--优化认知:用直角坐标系研究锐角三角函数--探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)--自主定义:任意角三角函数定义--登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)--例题与练习--回顾小结--布置作业]

  (一)复习引入、回想再认

  开门见山,面对全体学生提问:

  在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?

  探索任意角的三角函数(板书课题),请同学们回想,再明确一下:

  (情景1)什么叫函数?或者说函数是怎样定义的?

  让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:

  传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.

  现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A,其中x叫自变量,自变量x的取值范围A叫做函数的定义域.

  设计意图:

  函数和三角函数是一般和特殊的关系,是共性和个性的关系,学生已经学习了函数的概念,因此对三角函数的学习就是一个从一般到特殊的演绎的过程,也是以具体函数丰富函数概念的过程.教学经验表明:学生对函数两种定义的记忆是有一定困难的,容易遗忘,此处让学生对函数概念进行回想再认,目的在于明确函数概念的本质,为演绎学习任意角三角函数概念作好知识和认知准备.

  (情景2)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?

  学生口述后再投影展示,教师再根据投影进行强调:

  设计意图:

  学生在初中学习了锐角的三角函数概念,现在学习任意角的三角函数,又是一种推广和拓展的过程(类似于从有理数到实数的扩展).温故知新,要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始,对锐角三角函数的复习就必不可少.

  (二)引伸铺垫、创设情景

  (情景3)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!

  留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.

  能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、临边、斜边比值的说法显然是受到阻碍了,由于4.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.

  设计意图:

  从学生现有知识水平和认知能力出发,创设问题情景,让学生产生认知冲突,进行必要的启发,将学生思维引上自主探索、合作交流的"再创造"征程.

  教师对学生回答情况进行点评后布置任务情景:请同学们用直角坐标系重新研究锐角三角函数定义!

  师生共做(学生口述,教师板书图形和比值):

  把锐角α安装(如何安装?角的顶点与原点重合,角的始边与x轴非负半轴重合)在直角坐标系中,在角α终边上任取一点P,作Pm⊥x轴于m,构造一个RtΔomP,则∠moP=α(锐角),设P(x,y)(x>0、y>0),α的临边om=x、对边mP=y,斜边长|oP∣=r.

  根据锐角三角函数定义用x、y、r列出锐角α的正弦、余弦、正切三个比值,并补充对应列出三个倒数比值:

  设计意图:

  此处做法简单,思想重要.为了顺利实现推广,可以构建中间桥梁或公共载体,使之既与初中的定义一致,又能自然地迁移到任意角的情形.由于前一节已经以直角坐标系为工具来研究任意角了,学生自然能想到仍然以直角坐标系为工具来研究任意角的三角函数.初中以直角三角形边角关系来定义锐角三角函数,现在要用坐标系来研究,探索的结论既要满足任意角的情形,又要包容初中锐角三角函数定义.这是一个认识的飞跃,是理解任意角三角函数概念的关键之一,也是数学发现的重要思想和方法,属于策略性知识,能够形成迁移能力,为学生在以后学习中对某些知识进行推广拓展奠定了基础(譬如从平面向量到空间向量的扩展,从实数到复数的扩展等).

  (情景4)各个比值与角之间有怎样的关系?比值是角的函数吗?

  追问:锐角α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:保持r不变,让P绕原点o旋转即α在锐角范围内变化,六个比值随之变化的直观形象。结论是:比值随α的变化而变化.

  引导学生观察图3,联系相似三角形知识,

  探索发现:

  对于锐角α的每一个确定值,六个比值都是

  确定的,不会随P在终边上的移动而变化.

  得出结论(强调):当α为锐角时,六个比值随α的变化而变化;但对于锐角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.所以,六个比值分别是以角α为自变量、以比值为函数值的函数.

  设计意图:

  初中学生对函数理解较肤浅,这里在学生思维的最近发展区进一步研究初中学过的锐角三角函数,在思维上更上了一个层次,扣准函数概念的内涵,突出变量之间的依赖关系或对应关系,是从函数知识演绎到三角函数知识的主要依据,是准确理解三角函数概念的关键,也是在认知上把三角函数知识纳入函数知识结构的关键.这样做能够使学生有效地增强函数观念.

  (三)分析归纳、自主定义

  (情境5)能将锐角的比值情形推广到任意角α吗?

  水到渠成,师生共同进行探索和推广:

  对于一个任意角α,它的终边所在位置包括下列两类共八种情形(投影展示并作分析):

  终边分别在四个象限的情形:终边分别在四个半轴上的情形:

  ;

  (指出:不画出角的方向,表明角具有任意性)

  怎样刻画任意角的三角函数呢?研究它的六个比值:

  (板书)设α是一个任意角,在α终边上除原点外任意取一点P(x,y),P与原点o之间的距离记作r(r=>0),列出六个比值:

  α=kππ/2时,x=0,比值y/x、r/x无意义;

  α=kπ时,y=0,比值x/y、r/y无意义.

  追问:α大小发生变化时,比值会改变吗?

  先让学生想象思考,作出主观判断,再用几何画板动画演示,同时作好解释说明:使r保持不变,P绕原点o逆时针、顺时针旋转即角α变化,六个比值随之改变的直观形象。结论是:各比值随α的变化而变化.

  再引导学生利用相似三角形知识,探索发现:对于任意角α的每一个确定值,六个比值都是确定的,不会随P在终边上的移动而变化.

  综上得到(强调):当角α变化时,六个比值随之变化;对于确定的角α,六个比值(如果存在的话)都不会随P在角α终边上的改变而改变,六个比值是确定的(对应的多值性即诱导公式一留到下节课分析).

  因此,六个比值分别是以角α为自变量、以比值为函数值的函数.

  根据历史上的规定,对比值进行命名,指出英文记法和读法,记作(承前作复合板书):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教师强调:sinα表示sin与α的乘积吗?不是,sinα是函数记号,是一个整体,相当于函数记号f(x).其它几个三角函数也如此

  投影显示图六,指导学生分析其对应关系,进一步体会其函数内涵:

  (图六)

  指导学生识记六个比值及函数名称.

  教师指出:正弦、余弦、正切、余切、正割、余割六个函数统称为三角函数,三角函数有非常丰富的知识和思想方法,我们以后主要学习正弦、余弦、正切三个函数的相关知识和方法,对于余切、正割、余割,只要同学们了解它们的定义就够了(遵循大纲要求).

  引导学生进一步分析理解:

  已知角的集合与实数集之间可以建立一一对应关系,对于每一个确定的实数,把它看成一个弧度数,就对应着唯一的一个角,从而分别对应着六个唯一的三角函数值.因此,(板书)三角函数可以看成是以实数为自变量的函数,这将为以后的应用带来很多方便.

  设计意图:

  把角的终边分别在四个象限、四条半轴上的情形全作出来,有利于对任意性的全面把握.明确比值存在与否的条件,为确定函数定义域作准备.动画演示比值与角之间的依赖性与确定性关系,深化理解三角函数内涵.引导学生在理解的基础上自主地对三角函数作出明确定义,是本节课的中心任务.由于学生刚学弧度制,对弧度制的理解有待于在以后的学习应用中逐步感悟,因此部分学生对"三角函数可以看成是以实数为自变量的函数"的理解有半信半疑之感,有待通过后续的应用加深理解.

  (四)探索定义域

  (情景6)(1)函数概念的三要素是什么?

  函数三要素:对应法则、定义域、值域.

  正弦函数sinα的对应法则是什么?

  正弦函数sinα的对应法则,实质上就是sinα的定义:对α的每一个确定的值,有唯一确定的比值y/r与之对应,即α→y/r=sinα.

  (2)布置任务情景:什么是三角函数的定义域?请求出六个三角函数的定义域,填写下表:

  三角函数

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定义域

  引导学生自主探索:

  如果没有特别说明,那么使解析式有意义的自变量的取值范围叫做函数的定义域,三角函数的定义域自然是指:使比值有意义的角α的取值范围.

  关于sinα=y/r、cosα=x/r,对于任意角α(弧度数),r>0,y/r、x/r恒有意义,定义域都是实数集R.

  对于tanα=y/x,α=kππ/2时x=0,y/x无意义,tanα的定义域是:{α|α∈R,且α≠kππ/2}..........

  教师指出:sinα、cosα、tanα的定义域必须紧扣三角函数定义在理解的基础上记熟,cotα、cscα、secα的定义域不要求记忆.

  (关于值域,到后面再学习).

  设计意图:

  定义域是函数三要素之一,研究函数必须明确定义域.指导学生根据定义自主探索确定三角函数定义域,有利于在理解的基础上记住它、应用它,也增进对三角函数概念的掌握.

  (五)符号判断、形象识记

  (情景7)能判断三角函数值的正、负吗?试试看!

  引导学生紧紧抓住三角函数定义来分析,r>0,三角函数值的符号决定于x、y值的正负,根据终边所在位置总结出形象的识记口诀:

  (同好得正、异号得负)

  sinα=y/r:上正下负横为0cosα=x/r:左负右正纵为0tanα=y/x:交叉正负

  设计意图:

  判断三角函数值的正负符号,是本章教材的一项重要的知识、技能要求.要引导学生抓住定义、数形结合判断和记忆三角函数值的正负符号,并总结出形象的识记口诀,这也是理解和记忆的关键.

  (六)练习巩固、理解记忆

  1、自学例1:已知角α的终边经过点P(2,-3),求α的六个三角函数值.

  要求:读完题目,思考:计算什么?需要准备什么?闭目心算,对照解答,模仿书面表达格式,巩固定义.

  课堂练习:

  p19题1:已知角α的终边经过点P(-3,-1),求α的六个三角函数值.

  要求心算,并提问中下学生检验,--------

  点评:角α终边上有无穷多个点,根据三角函数的定义,只要知道α终边上任意一个点的坐标,就可以计算这个角的三角函数值(或判断其无意义).

  补充例题:已知角α的终边经过点P(x,-3),cosα=4/5,求α的其它五个三角函数值.

  师生探索:已知y=-3,要求其它五个三角函数值,须知r=?,x=?.根据定义得=(方程思想),x>0,解得x=4,从而--------.解答略.

  2、自学例2:求下列各角的六个三角函数值:(1)0;(2)π/2;(3)3π/2.

  提问,据反馈信息作点评、修正.

  师生探索:紧扣三角函数定义求解,首先要在终边上取定一点。终边在哪儿呢?取定哪一点呢?任意点、还是特殊点?要灵活,只要能够算出三角函数值,都可以。

  取特殊点能使计算更简明。课堂练习:p19题2.(改编)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  处理:要求取点用定义求解,针对计算过程提问、点评,理解巩固定义.

  强调:终边在坐标轴上的角叫轴线角,如0、π/2、π、3π/2等,今后经常用到轴线角的三角函数值,要结合三角函数定义记熟这些值.

  设计意图:

  及时安排自学例题、自做教材练习题,一般性与特殊性相结合,进行适量的变式练习,以巩固和加深对三角函数概念的理解,通过课堂积极主动的练习活动进行思维训练,把"培养学生分析解决问题的能力"贯穿在每一节课的课堂教学始终.

  (七)回顾小结、建构网络

  要求全体学生根据教师所提问题进行总结识记,提问检查并强调:

  1.你是怎样把锐角三角函数定义推广到任意角的?或者说任意角三角函数具体是怎样定义的?(建立直角坐标系,使角的顶点与坐标原点重合,---,在终边上任意取定一点P,---)

  2.你如何判断和记忆正弦、余弦、正切函数的定义域?(根据定义,------)

  3.你如何记忆正弦、余弦、正切函数值的符号?(根据定义,想象坐标位置,-----)

  设计意图:

  遗忘的规律是先快后慢,回顾再现是记忆的重要途径,在课堂内及时总结识记主要内容是上策.此处以问题形式让学生自己归纳识记本节课的主体内容,抓住要害,人人参与,及时建构知识网络,优化知识结构,培养认知能力.

  (八)布置课外作业

  1.书面作业:习题4.3第3、4、5题.

  2.认真阅读p22"阅读材料:三角函数与欧拉",了解欧拉的生平和贡献,特别学习他对科学的挚着精神和坚忍不拔的顽强毅力!有兴趣的同学可以上网查阅欧拉的相关情况.

  教学设计说明

  一、对本节教材的理解

  三角函数是描述周期运动现象的重要的数学模型,有非常广泛的应用.

  星星之火,可以燎原.

  直角三角形简单朴素的边角关系,以直角坐标系为工具进行自然地推广而得到简明的任意角的三角函数定义,紧紧扣住三角函数定义这个宝贵的源泉,自然地导出三角函数线、定义域、符号判断、值域、同角三角函数关系、多组诱导公式、多组变换公式、辅助角公式、图象和性质,本章教材就是这些内容的具体安排.定义直接用于解析几何(如直线斜率公式、极坐标、部分曲线的参数方程等),定义还是直接解决某些问题的工具,三角函数知识是物理学、高等数学、测量学、天文学的重要基础.

  三角函数定义必然是学好全章内容的关键,如果学生掌握不好,将直接影响到后续内容的学习,由三角函数定义的基础性和应用的广泛性决定了本节教材的重点就是定义本身.

  二、教学法加工

  数学教材通常用抽象概括的形式化的数学书面语言阐述其知识和方法,教师只有通过教学法加工,始终贯彻"以学生的发展为本"的科学教育观,"将数学的学术形态转化为教育形态"(张奠宙语),引导学生积极主动地进行思考活动,直接参与体验数学知识产生发展的背景、过程,返璞归真,揭示本质,体会其中的思想和方法,学生只有这样才能真正理解掌握数学知识和方法,有效地发展智力、培养能力.

  在本节教材中,三角函数定义是重点,三角函数线是难点,为了较好地突出重点和突破难点,分散重点和难点,同时兼顾例题、课堂练习的协调匹配,将不按教材顺序来进行教学,第一课时安排三角函数的定义(突出重点)、定义域、符号判断、例题1、2及p19课堂练习1、2、3,第二课时安排三角函数线、p15练习(突破难点)、诱导公式一及课本例题3、4和其它练习.本课例属第一课时.

  教学经验表明,三角函数定义"简单易记",学生很容易轻视它,不少学生机械记忆、一知半解.本课例坚持"教师主导、学生主体"的原则,采用"启发探索、讲练结合"的常规教学方法,在学生的最近发展区围绕学生的学习目标设计了一系列符合学生认知规律的程序,通过多媒体辅助教学动画演示比值与角之间的依赖关系,拓展思维活动时空,力求使学生全员主动参与,积极思考,体会定义产生、发展的过程,通过思维过程来理解知识、培养能力.

  将六个比值放在一起来研究,同时给出六个三角函数的定义,能够增强对比感和整体感,至于大纲对两组函数掌握与了解的不同要求,在下一步的教学中注意区分就行了.

  教学中关于符号sinα、cosα、tanα的出场安排,教材首先对比值取名并给出英文记法,再研究它们与α的函数关系;另外可以先研究六个比值与α之间的函数关系,然后再对六个比值取名给出记法.后者更能突出函数内涵,揭示三角函数本质.本课例采用后者组织教学.

  三、教学过程分析(见穿插在教案中的设计意图).

高中数学说课稿 篇4

  各位评委老师你们好,我是第?号选手。我今天说课的题目是《 》,我将从教材分析,教法,学法,教学程序,等几个方面进行我的说课。

  一,教材分析

  这部分我主要从3各方面阐述

  1, 教材的地位和作用

  《 》是北师大版必修?第?章第?节的内容,在此之前,同学们已经学习了、,这些对本节课的学习有一定的铺垫作用,同是学好本节的内容不仅加深前面所学习的知识,而且为后面我们将要学习的?知识打好基础,?所以说本节课的学习在整个高中数学学习过程中占有重要地位!

  2.根据教学大纲的规定,教学内容的要求,教学对象的实情我确定了如下3维教学目标(i)知识目标:

  II能力目标;初步培养学生归纳,抽象,概括的思维能力。

  训练学生认识问题,分析问题,解决问题的能力

  III情感目标;通过学生的探索,史学生体会数学就在我们身边,让学生发现生活的数学,培养不断超越的'创新品质,提高数学素养。

  3, 结合以上分析以及高一学生的人知水平我确定啦本节课的重难点

  教学重点:

  教学难点;

  二,教法

  教学方法是完成教学任务的手段,恰当的学者教学方法至关重要,根据本节课的教学内容,考虑到高一学生已经初步具有一定的探索能力,并喜欢挑战问题的实际情况,为啦更有效的突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的知道思想。我主要采用 问题探究法 引导发现发,案例教学法,讲授法,在教学过程中精心设计带有启发性和思考性的问题,满足学生探索的欲望,培养学生的学习兴趣,激发来自学生主体最有利的动力。并运用多媒体课件的形式,更形象直观,提高教学效果的同时加大啦课堂密度!

  学法

  根据学生的年龄特征,运用讯息渐进,逐步升入,理论联系实际的规律,让学生从问题中质疑,尝试,归纳,总结,运用。培养学生发现问题,研究问题,分析问题的能力。自主参与知识的发生,发展,形成过程,完成从感性认识 到理性思维的质的飞跃,史学生在知识和能力方面都有所提高。

  三,教学程序

  1, 创设情境,提出问题

  让学生产生强烈的问题意识,学生试着利用以前的知识经验,同化索引出当前学习的新知识,激发学习的兴趣和动机。

  2, 引导探究,直奔主题。(揭示概念)

  参用小组合作的方式,各小组派代表发表成果,教师作为教学的引导者,给予肯定的评价,并给出一定的指导,最后师生共同得出??!教师引导学生进一步学习。整个过程充分突出学生的主体地位,培养学生合作探究的能力,激发兴趣,更让学生在思考学术问题以及解决数学问题的思想方法上有更深的交流。

  3, 自我尝试,初步应用

  在讲解是,不仅在于怎样接,更在于为什么这样解,及时引导学生探究运用知识,解决问题的方法,及时对解题方法和规律进行概括,有利于培养学生的思维能力。 4 .当堂训练,巩固深化(反馈矫正)

  通过学生的主体参与,让学生巩固所学的知识,实现对知识再认识的以及在数学解题思想方法层面上进一步升华

  5,归纳小结,回顾反思

  从知识,方法,经验等方面进行总结。让学生思考本节课学到啦那些知识,还有那些疑问。本节课最大的体验。本节课你学会那些技能。

  知识性的内容小结,可以把课堂教学传授的知识尽快转化为学生的素养,数学思想发放的小结,可以使学生更深刻地理解数学思想发放在解题中的地位和作用,并且逐步培养学生良好的个性品质目标。

  ,6,变式延伸,布置作业

  必做题,对本届课学生知识水平的反馈。选作题,对本节课知识内容的延伸。使不同层次学生都可以收获成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,让每个学生在原有的基础上有所发展。做到人人学数学,人人学不同的数学。

  7板书设计

  力图简洁,形象,直观,概括以便学生易于掌握。

  四,教学评价

  学生学习结果评价当然重要,但是学习过程的评价更加重要。本节课中高度重视学生学习过程中的参与度,自信心,团队精神,合作意识,独立思考习惯的养成。数学发现的能力,以及学习的兴趣和成就感,,学生熟悉的问题情境可以激发学生的学习兴趣,问题串的设计可以让更多学生主动参与,师生对话可以实现师生合作,适度的研讨可以驻京生生交流,知识的生成和问题的解决可以让学生感受到成功的喜悦。缜密的思考可以培养学生独立思考的习惯,让学生在教室评价,学生评价以及自我评价的过程中体验知识的积累,探索能力的长进和思维品质的提高,为学生的可持续发展打下基础,

  以上就是我的说课内容。不当之处,希望各位老师给予指正。谢谢各位评委老师!你们幸苦啦!

高中数学说课稿 篇5

  【一】教学背景分析

  1。教材结构分析

  《圆的方程》安排在高中数学第二册(上)第七章第六节。圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用。圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用。

  2。学情分析

  圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的。但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难。另外学生在探究问题的能力,合作交流的意识等方面有待加强。

  根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:

  3。教学目标

  (1) 知识目标:①掌握圆的标准方程;

  ②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;

  ③利用圆的标准方程解决简单的实际问题。

  (2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;

  ②加深对数形结合思想的理解和加强对待定系数法的运用;

  ③增强学生用数学的意识。

  (3) 情感目标:①培养学生主动探究知识、合作交流的意识;

  ②在体验数学美的过程中激发学生的学习兴趣。

  根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:

  4。 教学重点与难点

  (1)重点:圆的标准方程的求法及其应用。

  (2)难点: ①会根据不同的已知条件求圆的标准方程;

  ②选择恰当的坐标系解决与圆有关的实际问题。

  为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:

  好学教育:

  【二】教法学法分析

  1。教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上。另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程。

  2。学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解。通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆。通过应用圆的标准方程,熟悉用待定系数法求的过程。 下面我就对具体的教学过程和设计加以说明:

  【三】教学过程与设计

  整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:

  创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高

  反馈训练 形成方法 小结反思 拓展引申

  下面我从纵横两方面叙述我的教学程序与设计意图。

  首先:纵向叙述教学过程

  (一)创设情境——启迪思维

  问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。7m,高为3m的货车能不能驶入这个隧道?

  通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决。一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

  通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

  (二)深入探究——获得新知

  问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

  2。如果圆心在,半径为时又如何呢?

  好学教育:

  这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

  得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

  (三)应用举例——巩固提高

  I。直接应用 内化新知

  问题三 1。写出下列各圆的标准方程:

  (1)圆心在原点,半径为3;

  (2)经过点,圆心在点。

  2。写出圆的圆心坐标和半径。

  我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

  II。灵活应用 提升能力

  问题四 1。求以点为圆心,并且和直线相切的圆的方程。

  2。求过点,圆心在直线上且与轴相切的圆的方程。

  3。已知圆的方程为,求过圆上一点的切线方程。

  你能归纳出具有一般性的结论吗?

  已知圆的方程是,经过圆上一点的切线的方程是什么?

  我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

  III。实际应用 回归自然

  问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

  好学教育:

  我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

  (四)反馈训练——形成方法

  问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。

  2。求圆过点的切线方程。

  3。求圆过点的切线方程。

  接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

  (五)小结反思——拓展引申

  1。课堂小结

  把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

  圆心在原点时,半径为r 的圆的标准方程为:。

  ②已知圆的方程是,经过圆上一点的切线的方程是:。

  2。分层作业

  (A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

  3。激发新疑

  问题七 1。把圆的标准方程展开后是什么形式?

  2。方程表示什么图形?

  在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

  以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

  (一)突出重点 抓住关键 突破难点

  好学教育:

  求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

  第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

  (二)学生主体 教师主导 探究主线

  本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

  (三)培养思维 提升能力 激励创新

  为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

  以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

高中数学说课稿 篇6

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2.1.3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题.

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质.通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题.通过上述活动,加深对函数本质的认识.函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础.此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一.从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法.

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质.

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性.

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性.

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性.

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用.具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达.

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性.

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力.

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃.

  三、 教学过程

教学


环节


教 学 过 程


设 计 意 图


问题


情境


(播放中央电视台天气预报的音乐)


满足在定义域上的单调性的讨论.


2、重视学生发现的过程.如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程.


3、重视学生的动手实践过程.通过对定义的解读、巩固,让学生动手去实践运用定义.


4、重视课堂问题的设计.通过对问题的设计,引导学生解决问题.



高中数学说课稿 篇7

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1、能判断一些简单函数的奇偶性。

  2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  通过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上达到了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、形成概念

  在这一环节中共设计了2个探究活动。

  探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三) 学生探索、领会定义

  探究3 下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1判断下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。

  例1设计意图是归纳出判断奇偶性的步骤:

  (1) 先求定义域,看是否关于原点对称;

  (2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。

  例2 判断下列函数的奇偶性:

  例3 判断下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?

  例4(1)判断函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。

【有关高中数学说课稿范文汇编七篇】相关文章:

高中数学说课稿范文汇编七篇08-02

有关高中数学说课稿七篇07-29

有关高中数学说课稿范文集锦七篇08-18

有关高中数学说课稿范文汇总七篇08-18

有关高中数学说课稿范文锦集七篇08-15

有关高中数学说课稿范文汇编9篇08-15

有关高中数学说课稿范文汇编8篇08-11

有关高中数学说课稿范文汇编五篇08-08

精选高中数学说课稿范文汇编七篇08-20