高中数学说课稿

时间:2021-08-20 10:56:35 高中说课稿 我要投稿

实用的高中数学说课稿范文汇编5篇

  作为一名无私奉献的老师,往往需要进行说课稿编写工作,说课稿有助于教学取得成功、提高教学质量。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的高中数学说课稿5篇,供大家参考借鉴,希望可以帮助到有需要的朋友。

实用的高中数学说课稿范文汇编5篇

高中数学说课稿 篇1

  说课内容:普通高中课程标准实验教科书(人教A版)《数学必修4》第二章第四节“平面向量的数量积”的第一课时---平面向量数量积的物理背景及其含义。

  下面,我从背景分析、教学目标设计、课堂结构设计、教学过程设计、教学媒体设计及教学评价设计六个方面对本节课的思考进行说明。

  一、 背景分析

  1、学习任务分析

  平面向量的数量积是继向量的线性运算之后的又一重要运算,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节课是第一课时。

  本节课的主要学习任务是通过物理中“功”的事例抽象出平面向量数量积的概念,在此基础上探究数量积的性质与运算律,使学生体会类比的思想方法,进一步培养学生的抽象概括和推理论证的能力。其中数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,而且很好的体现了数形结合的数学思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点。

  2、学生情况分析

  学生在学习本节内容之前,已熟知了实数的运算体系,掌握了向量的概念及其线性运算,具备了功等物理知识,并且初步体会了研究向量运算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再从概念出发,在与实数运算类比的基础上研究性质和运算律。这为学生学习数量积做了很好的铺垫,使学生倍感亲切。但也正是这些干扰了学生对数量积概念的理解,一方面,相对于线性运算而言,数量积的结果发生了本质的变化,两个有形有数的向量经过数量积运算后,形却消失了,学生对这一点是很难接受的;另一方面,由于受实数乘法运算的影响,也会造成学生对数量积理解上的偏差,特别是对性质和运算律的理解。因而本节课教学的难点数量积的概念。

  二、 教学目标设计

  《普通高中数学课程标准(实验)》 对本节课的要求有以下三条:

  (1)通过物理中“功”等事例,理解平面向量数量积的含义及其物理意义。

  (2)体会平面向量的数量积与向量投影的关系。

  (3)能用运数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

  从以上的背景分析可以看出,数量积的概念既是本节课的重点,也是难点。为了突破这一难点,首先无论是在概念的引入还是应用过程中,物理中“功”的实例都发挥了重要作用。其次,作为数量积概念延伸的性质和运算律,不仅能够使学生更加全面深刻地理解概念,同时也是进行相关计算和判断的理论依据。最后,无论是数量积的性质还是运算律,都希望学生在类比的基础上,通过主动探究来发现,因而对培养学生的抽象概括能力、推理论证能力和类比思想都无疑是很好的载体。

  综上所述,结合“课标”要求和学生实际,我将本节课的教学目标定为:

  1、了解平面向量数量积的物理背景,理解数量积的含义及其物理意义;

  2、体会平面向量的数量积与向量投影的关系,掌握数量积的性质和运算律,

  并能运用性质和运算律进行相关的运算和判断;

  3、体会类比的数学思想和方法,进一步培养学生抽象概括、推理论证的能力。

  三、课堂结构设计

  本节课从总体上讲是一节概念教学,依据数学课程改革应关注知识的发生和发展过程的理念,结合本节课的知识的逻辑关系,我按照以下顺序安排本节课的教学:

  即先从数学和物理两个角度创设问题情景,通过归纳和抽象得到数量积的概念,在此基础上研究数量积的性质和运算律,使学生进一步加深对概念的理解,然后通过例题和练习使学生巩固概念,加深印象,最后通过课堂小结提高学生认识,形成知识体系。

  四、 教学媒体设计

  和“大纲”教材相比,“课标”教材在本节课的内容安排上,虽然将向量的夹角在“平面向量基本定理”一节提前做了介绍,但却将原来分两节课完成的内容合并成一节,相比较而言本节课的教学任务加重了许多。为了保证教学任务的完成,顺利实现本节课的教学目标,考虑到本节课的实际特点,在教学媒体的使用上,我的设想主要有以下两点:

  1、制作高效实用的电脑多媒体课件,主要作用是改变相关内容的呈现方式,以此来节约课时,增加课堂容量。

  2、设计科学合理的板书(见下),一方面使学生加深对主要知识的印象,另一方面使学生清楚本节内容知识间的逻辑关系,形成知识网络。

  平面向量数量积的物理背景及其含义

  一、 数量积的概念 二、数量积的性质 四、应用与提高

  1、 概念: 例1:

  2、 概念强调 (1)记法 例2:

  (2)“规定” 三、数量积的运算律 例3:

  3、几何意义:

  4、物理意义:

  五、 教学过程设计

  课标指出:数学教学过程是教师引导学生进行学习活动的过程,是教师和学生间互动的过程,是师生共同发展的过程。为有序、有效地进行教学,本节课我主要安排以下六个活动:

  活动一:创设问题情景,激发学习兴趣

  正如教材主编寄语所言,数学是自然的,而不是强加于人的。平面向量的数量积这一重要概念,和向量的线性运算一样,也有其数学背景和物理背景,为了体现这一点,我设计以下几个问题:

  问题1:我们已经研究了向量的哪些运算?这些运算的结果是什么?

  问题2:我们是怎么引入向量的加法运算的?我们又是按照怎样的顺序研究了这种运算的?

  期望学生回答:物理模型→概念→性质→运算律→应用

  问题3:如图所示,一物体在力F的作用下产生位移S,

  (1)力F所做的功W= 。

  (2)请同学们分析这个公式的特点:

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  问题1的设计意图在于使学生了解数量积的数学背景,让学生明白本节课所要研究的数量积与向量的加法、减法及数乘一样,都是向量的运算,但与向量的线性运算相比,数量积运算又有其特殊性,那就是其结果发生了本质的变化。

  问题2的设计意图在于使学生在与向量加法类比的基础上明了本节课的研究方法和顺序,为教学活动指明方向。

  问题3的设计意图在于使学生了解数量积的物理背景,让学生知道,我们研究数量积绝不仅仅是为了数学自身的完善,而是有其客观背景和现实意义的,从而产生了进一步研究这种新运算的愿望。同时,也为抽象数量积的概念做好铺垫。

  活动二:探究数量积的概念

  1、概念的抽象

  在分析“功”的计算公式的基础上提出问题4

  问题4:你能用文字语言来表述功的计算公式吗?如果我们将公式中的力与位移推广到一般向量,其结果又该如何表述?

  学生通过思考不难回答:功是力与位移的大小及其夹角余弦的乘积;两个向量的大小及其夹角余弦的乘积。这样,学生事实上已经得到数量积概念的文字表述了,在此基础上,我进一步明晰数量积的概念。

  2、概念的明晰

  已知两个非零向量

  与

  ,它们的夹角为

  ,我们把数量 ︱

  ︱·︱

  ︱cos

  叫做

  与

  的数量积(或内积),记作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在强调记法和“规定”后 ,为了让学生进一步认识这一概念,提出问题5

  问题5:向量的数量积运算与线性运算的结果有什么不同?影响数量积大小的因素有哪些?并完成下表:

  角

  的范围0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符号

  通过此环节不仅使学生认识到数量积的结果与线性运算的结果有着本质的不同,而且认识到向量的夹角是决定数量积结果的重要因素,为下面更好地理解数量积的性质和运算律做好铺垫。

  3、探究数量积的几何意义

  这个问题教材是这样安排的:在给出向量数量积的概念后,只介绍了向量投影的定义,直到讲完例1后,为了证明运算律的第三条才直接以结论的形式呈现给学生,我觉得这样安排似乎不太自然,还不如在给出向量投影的概念后,直接由学生自己归纳得出,所以做了调整。为此,我首先给出给出向量投影的概念,然后提出问题5。

  如图,我们把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,记做:OB1=│

  │cos

  问题6:数量积的几何意义是什么?

  这样做不仅让学生从“形”的角度重新认识数量积的概念,从中体会数量积与向量投影的关系,同时也更符合知识的连贯性,而且也节约了课时。

  4、研究数量积的物理意义

  数量积的概念是由物理中功的概念引出的,学习了数量积的概念后,学生就会明白功的数学本质就是力与位移的数量积。为此,我设计以下问题 一方面使学生尝试计算数量积,另一方面使学生理解数量积的物理意义,同时也为数量积的性质埋下伏笔。

  问题7:

  (1) 请同学们用一句话来概括功的数学本质:功是力与位移的数量积 。

  (2)尝试练习:一物体质量是10千克,分别做以下运动:

  ①、在水平面上位移为10米;

  ②、竖直下降10米;

  ③、竖直向上提升10米;

  ④、沿倾角为30度的斜面向上运动10米;

  分别求重力做的功。

  活动三:探究数量积的运算性质

  1、性质的发现

  教材中关于数量积的三条性质是以探究的形式出现的,为了很好地完成这一探究活动,在完成上述练习后,我不失时机地提出问题8:

  (1)将尝试练习中的① ② ③的结论推广到一般向量,你能得到哪些结论?

  (2)比较︱

  ·

  ︱与︱

  ︱×︱

  ︱的大小,你有什么结论?

  在学生讨论交流的基础上,教师进一步明晰数量积的性质,然后再由学生利用数量积的定义给予证明,完成探究活动。

  2、明晰数量积的性质

  3、性质的证明

  这样设计体现了教师只是教学活动的引领者,而学生才是学习活动的主体,让学生成为学习的研究者,不断地体验到成功的喜悦,激发学生参与学习活动的热情,不仅使学生获得了知识,更培养了学生由特殊到一般的思维品质。

  活动四:探究数量积的运算律

  1、运算律的发现

  关于运算律,教材仍然是以探究的形式出现,为此,首先提出问题9

  问题9:我们学过了实数乘法的哪些运算律?这些运算律对向量是否也适用?

  通过此问题主要是想使学生在类比的基础上,猜测提出数量积的运算律。

  学生可能会提出以下猜测: ①

  ·

  =

  ·

  ②(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜测①的正确性是显而易见的。

  关于猜测②的正确性,我提示学生思考下面的问题:

  猜测②的左右两边的结果各是什么?它们一定相等吗?

  学生通过讨论不难发现,猜测②是不正确的。

  这时教师在肯定猜测③的基础上明晰数量积的运算律:

  2、明晰数量积的运算律

  3、证明运算律

  学生独立证明运算律(2)

  我把运算运算律(2)的证明交给学生完成,在证明时,学生可能只考虑到λ>0的情况,为了帮助学生完善证明,提出以下问题:

  当λ<0时,向量

  与λ

  ,

  与λ

  的方向 的关系如何?此时,向量λ

  与

  及

  与λ

  的夹角与向量

  与

  的夹角相等吗?

  师生共同证明运算律(3)

  运算律(3)的证明对学生来说是比较困难的,为了节约课时,这个证明由师生共同完成,我想这也是教材的本意。

  在这个环节中,我仍然是首先为学生创设情景,让学生在类比的基础上进行猜想归纳,然后教师明晰结论,最后再完成证明,这样做不仅培养了学生推理论证的能力,同时也增强了学生类比创新的意识,将知识的获得和能力的培养有机的结合在一起。

  活动五:应用与提高

  例1、(师生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  与

  的夹角为60°,求

  (

  +2

  )·(

  -3

  ),并思考此运算过程类似于哪种运算?

  例2、(学生独立完成)对任意向量

  ,b是否有以下结论:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(师生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  与

  不共线,k为何值时,向量

  +k

  与

  -k

  互相垂直?并思考:通过本题你有什么收获?

  本节教材共安排了四道例题,我根据学生实际选择了其中的三道,并对例1和例3增加了题后反思。例1是数量积的性质和运算律的综合应用,教学时,我重点从对运算原理的分析和运算过程的规范书写两个方面加强示范。完成计算后,进一步提出问题:此运算过程类似于哪种运算?目的是想让学生在类比多项式乘法的基础上自己猜测提出例2给出的两个公式,再由学生独立完成证明,一方面这并不困难,另一方面培养了学生通过类比这一思维模式达到创新的目的。例3的主要作用是,在继续巩固性质和运算律的'同时,教给学生如何利用数量积来判断两个向量的垂直,是平面向量数量积的基本应用之一,教学时重点给学生分析数与形的转化原理。

  为了使学生更好的理解数量积的含义,熟练掌握性质及运算律,并能够应用数量积解决有关问题,再安排如下练习:

  1、 下列两个命题正确吗?为什么?

  ①、若

  ≠0,则对任一非零向量

  ,有

  ·

  ≠0.

  ②、若

  ≠0,

  ·

  =

  ·

  ,则

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,当

  ·

  <0或

  ·

  =0时,试判断△ABC的形状。

  安排练习1的主要目的是,使学生在与实数乘法比较的基础上全面认识数量积这一重要运算,

  通过练习2使学生学会用数量积表示两个向量的夹角,进一步感受数量积的应用价值。

  活动六:小结提升与作业布置

  1、本节课我们学习的主要内容是什么?

  2、平面向量数量积的两个基本应用是什么?

  3、我们是按照怎样的思维模式进行概念的归纳和性质的探究?在运算律的探究过程中,渗透了哪些数学思想?

  4、类比向量的线性运算,我们还应该怎样研究数量积?

  通过上述问题,使学生不仅对本节课的知识、技能及方法有了更加全面深刻的认识,同时也为下

  一节做好铺垫,继续激发学生的求知欲。

  布置作业:

  1、课本P121习题2.4A组1、2、3。

  2、拓展与提高:

  已知

  与

  都是非零向量,且

  +3

  与7

  -5

  垂直,

  -4

  与 7

  -2

  垂直求

  与

  的夹角。

  在这个环节中,我首先考虑检测全体学生是否都达到了“课标”的基本要求,因此安排了一组教材中的习题,目的是让所有的学生继续加深对数量积概念的理解和应用,为后续学习打好基础。其次,为了能让不同的学生在数学领域得到不同的发展,我又安排了一道有一定难度的问题供学有余力的同学选做。

  六、教学评价设计

  评价方式的转变是新课程改革的一大亮点,课标指出:相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程。因此,数学学习的评价既要重视结果,也要重视过程。结合“课标”对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:

  1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定

  性的评价。

  2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。

  3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。

  4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。

高中数学说课稿 篇2

  我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:

  一、教材分析

  教材的地位和作用

  “曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响。学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径。如果以为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线和方程”的开头课是解析几何教学的“重头戏”!

  根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程。

  二、教学目标

  根据教学大纲的要求以及本教材的地位和作用,结合高二学生的认知特点确定教学目标如下:

  知识目标:

  1、了解曲线上的点与方程的解之间的一一对应关系;

  2、初步领会“曲线的方程”与“方程的曲线”的概念;

  3、学会根据已有的情景资料找规律,进而分析、判断、归纳结论;

  4、强化“形”与“数”一致并相互转化的思想方法。

  能力目标:

  1、通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;

  2、在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理的阐述自己的观点;

  3、能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识。

  情感目标:

  1、通过概念的引入,让学生感受从特殊到一般的认知规律;

  2、通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神。

  三、重难点突破

  “曲线的方程”与“方程的曲线”的概念是本节的重点,这是由于本节课是由直观表象上升到抽象概念的过程,学生容易对定义中为什么要规定两个关系产生困惑,原因是不理解两者缺一都将扩大概念的外延。由于学生已经具备了用方程表示直线、抛物线等实际模型,积累了感性认识的基础,所以可用举反例的方法来解决困惑,通过反例揭示“两者缺一”与直觉的矛盾,从而又促使学生对概念表述的严密性进行探索,自然地得出定义。为了强化其认识,又决定用集合相等的概念来解释曲线和方程的对应关系,并以此为工具来分析实例,这将有助于学生的理解,有助于学生通其法,知其理。

  怎样利用定义验证曲线是方程的曲线,方程是曲线的方程是本节的难点。因为学生在作业中容易犯想当然的错误,通常在由已知曲线建立方程的时候,不验证方程的解为坐标的点在曲线上,就断然得出所求的是曲线方程。这种现象在高考中也屡见不鲜。为了突破难点,本节课设计了三种层次的问题,幻灯片9是概念的直接运用,幻灯片10是概念的逆向运用,幻灯片11是证明曲线的方程。通过这些例题让学生再一次体会“二者”缺一不可。

  四、学情分析

  此前,学生已知,在建立了直角坐标系后平面内的点和有序实数对之间建立了一一对应关系,已有了用方程(有时以函数式的形式出现)表示曲线的感性认识(特别是二元一次方程表示直线),现在要进一步研究平面内的曲线和含有两个变数的方程之间的关系,是由直观表象上升到抽象概念的过程,对学生有相当大的难度。学生在学习时容易产生的问题是,不理解“曲线上的点的坐标都是方程的解”和“以这个方程的解为坐标的点都是曲线上的点”这两句话在揭示“曲线和方程”关系时各自所起的作用。本节课的教学目标也只能是初步领会,要求学生能答出曲线和方程间必须满足两个关系时才能称作“曲线的方程”和“方程的曲线”,两者缺一不可,并能借助实例指出两个关系的区别。

高中数学说课稿 篇3

  一、教材分析

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  本节课主要分为两个部分,一是理解集合的定义及一些基本特征。二是掌握集合与元素之间的关系。

  二、教学目标

  1、学习目标

  (1)通过实例,了解集合的含义,体会元素与集合之间的关系以及理解“属

  于”关系;

  (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

  2、能力目标

  (1)能够把一句话一个事件用集合的方式表示出来。

  (2)准确理解集合与及集合内的元素之间的关系。

  3、情感目标

  通过本节的把实际事件用集合的方式表示出来,从而培养数学敏感性,了 解到数学于生活中。

  三、教学重点与难点

  重点 集合的基本概念与表示方法;

  难点 运用集合的两种常用表示方法———列举法与描述法,正确表示一些简单的集合;

  四、教学方法

  (1)本课将采用探究式教学,让学生主动去探索,激发学生的学习兴趣。并分层教学,这样可顾及到全体学生,达到优生得到培养,后进生也有所收获的效果;

  (2)学生在老师的引导下,通过阅读教材,自主学习、思考、交流、讨论和概括,从而完成本节课的教学目标。

  五、学习方法

  (1)主动学习法:举出例子,提出问题,让学生在获得感性认识的同时,

  教师层层深入,启发学生积极思维,主动探索知识,培养学生思维想象 的综合能力。

  (2)反馈补救法:在练习中,注意观察学生对学习的反馈情况,以实现“培

  优扶差,满足不同。”

  六、教学思路

  具体的思路如下

  复习的引入:讲一些集合的相关数学及相关数学家的经历故事!这可以让学生更加了解数学史从何使学生对数学更加感兴趣,有助于上课的效率!因为时间关系这里我就不说相关数学史咯。

  一、 引入课题

  军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

  在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体。

  二、 正体部分

  学生阅读教材,并思考下列问题:

  (1)集合有那些概念?

  (2)集合有那些符号?

  (3)集合中元素的特性是什么?

  (4)如何给集合分类?

  (一)集合的有关概念

  (1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,

  都可以称作对象.

  (2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由

  这些对象的全体构成的集合.

  (3)元素:集合中每个对象叫做这个集合的元素.

  集合通常用大写的拉丁字母表示,如A、B、C、??元素通常用小写的拉丁字母表示,如a、b、c、??

  1. 思考:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,

  对学生的例子予以讨论、点评,进而讲解下面的问题。

  2、元素与集合的关系

  (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A。(举例)集合A={2,3,4,6,9}a=2 因此我们知道 a∈A

  (2)不属于:如果a不是集合A的元素,就说a不属于A,记作a?A

  要注意“∈”的方向,不能把a∈A颠倒过来写. (举例)

  集合A={3,4,6,9}a=2 因此我们知道a?A

  3、集合中元素的特性

  (1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.

  (2)互异性:集合中的元素一定是不同的.

  (3)无序性:集合中的元素没有固定的顺序.

  4、集合分类

  根据集合所含元素个属不同,可把集合分为如下几类:

  (1)把不含任何元素的集合叫做空集Ф

  (2)含有有限个元素的集合叫做有限集

  (3)含有无穷个元素的集合叫做无限集

  注:应区分?,{?},{0},0等符号的含义

  5、常用数集及其表示方法

  (1)非负整数集(自然数集):全体非负整数的集合.记作N

  (2)正整数集:非负整数集内排除0的集.记作N*或N+

  (3)整数集:全体整数的集合.记作Z

  (4)有理数集:全体有理数的集合.记作Q

  (5)实数集:全体实数的集合.记作R

  注:(1)自然数集包括数0.

  (2)非负整数集内排除0的集.记作N*或N+,Q、Z、R等其它数集内排

  除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*

  (二)集合的表示方法

  我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

  (1) 列举法:把集合中的元素一一列举出来,写在大括号内。

  如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;

  例1.(课本例1)

  思考2,引入描述法

  说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

  (2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

  如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;

  例2.(课本例2)

  说明:(课本P5最后一段)

  思考3:(课本P6思考) 强调:描述法表示集合应注意集合的代表元素

  {(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

  辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

  说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

  (三)课堂练习(课本P6练习)

  三、 归纳小结与作业

  本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

  书面作业:习题1.1,第1- 4题

高中数学说课稿 篇4

  一、说教材

  1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

  好学教育:

  因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

高中数学说课稿 篇5

  一.内容和内容分析

  “函数的奇偶性”是人教版数学必修教材必修一第一章第三节的内容,本节的主要内容是研究函数的一个性质—函数的奇偶性,学习奇函数和偶函数的概念.奇偶性是函数的一条重要性质,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性.从知识结构看,它既是函数概念的拓展和深化,又为后续研究指数函数、对数函数、幂函数、三角函数的基础,因此,本节课起着承上启下的重要作用。 本节课的教学重点:函数奇偶性的概念及判定。

  二.目标和目标分析

  (1)知识目标:从形和数两个方面进行引导,使学生理解奇偶性的概念,学会利用定义判断

  简单函数的奇偶性。

  (2)能力目标:通过设置问题情境培养学生判断、推理的能力,同时渗透数形结合和由特殊

  到一般的数学思想方法.

  (3)情感目标:在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。

  三.教学问题诊断分析

  导入有点慢,讲的有点细,导致时间上没有完成教学任务,感觉还是自己讲的太多,不能充分调动学生的积极性。

  四.教学支持条件分析

  用了多媒体,使用ppt,使得奇偶性函数概念的探究过程更形象更直观,是学生理解更深刻。

  五.教学过程设计

  为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:

  1.设疑导入、观图激趣:

  使用幻灯片展示图片蝴蝶、雪花等让学生感受生活中的美,从而引入对称在函数中的体现。

  2.指导观察、形成概念:

  作出函数y=x的图象,并观察这两个函数图象的对称性如何?

  借助课件演示,让学生分别计算f(1),f(-1),f(2),f(-2),学生很快会得到f(-1)=f(1),f(-2)=f(2),进而提出在定义域内是否对所有的x,都有类似的情况?借助课件演示,学生会得出结论,f(-x)=f(x),从而引导学生先把它们具体化,再用数学符号表示。根据以上特点,请学生用完整的语言叙述定义,同时给出板书:

  函数f(x)的定义域为A,且关于原点对称,如果有f(-x)=f(x),则称f(x)为偶函数,类比探究2

  偶函数的过程,得到奇函数的概念,又通过具体的例子说明了定义域关于原点对称是研究奇偶性的前提。

  3.学生探索、发展思维。

  接着通过学案上的例一,总结函数奇偶性的判断方法及步骤:

  (1)求出函数的定义域,并判断是否关于原点对称

  (2)验证f(-x)=f(x)或f(-x)=-f(x)

  (3)得出结论

  由学生小结判断奇偶性的步骤之后,提出新的问题:函数按奇偶性如何分类?既奇又偶的函数是不是只有一个?试举例说明。

  4.布置作业:

  六.目标检测设计

  学案上的题型主要包括奇偶性函数的判断及应用

  七.教学反思:(从两方面)

  1.思成功

  一:是通过设计富有挑战性的问题来呈现背景,通过问题的探究和自主学习来获取相关概念,实现了 “教学逻辑”与“学习逻辑”的连通、“知识逻辑”与“认知逻辑”的连通;二:是在老师创设的情境中,每个学生都积极投入探究过程,学生在疑惑中探索,在探索中思考,在思考中发现,大部分学生积极性高涨,通过看别人怎样观察,

  听别人怎样介绍,也学到了知识.

  2.思不足

  学生练习:在教学过程中应多注意学生的活动,由单一的问答式转化为多方位的考察,以采用

  学生板演或者把学生练习投影到屏幕上让全班学生纠正等方式,更好的考察学生掌握情况。

  语言组织:

  在讲授过程中还要注意到说话语速,语言组织等讲授技巧,应该用平缓的语气讲授,语言描述要简练易懂,不能拖泥带水。

  教学环节(的完整):

  在授课过程中要注意到教学环节设计,我们的教学过程有复习引入、讲授新课、例题讲解、学生练习、课时小结、布置作业等几个重要的环节,由于时间的关系没有来得及小结造成教学设计不完善。在以后的教学过程中要注意这些环节。

  以上是我对这节课以后的教学反思,还有很多地方做的还不完善,我要在以后的教学中努力改进这些错误,以便更好的适应教学,努力使自己的教学更上一层楼。

【实用的高中数学说课稿范文汇编5篇】相关文章:

实用的高中数学说课稿范文汇编6篇08-16

实用的高中数学说课稿范文汇编7篇08-16

实用的高中数学说课稿范文汇编八篇08-14

实用的高中数学说课稿范文汇编8篇08-20

实用的高中数学说课稿范文汇编9篇08-16

实用的高中数学说课稿汇编六篇07-29

实用的高中数学说课稿汇编9篇07-25

实用的高中数学说课稿范文汇编七篇08-20

实用的高中数学说课稿范文汇编十篇08-19