高中数学说课稿范文15篇
作为一名优秀的教育工作者,总不可避免地需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?以下是小编为大家整理的高中数学说课稿范文,欢迎大家借鉴与参考,希望对大家有所帮助。
高中数学说课稿范文1
各位评委:下午好!
我叫 ,来自 。今天我说课的课题《 》(第 课时)。下面我将围绕本节课“教什么?”、“怎样教?”以及“为什么这样教?”三个问题,从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计五方面逐一加以分析和说明。
一、教材分析
(一)教材的地位和作用
《 》是人教版出版社 第 册、第 单元的内容。《》既是 在知识上的延伸和发展,又是本章 的运用与巩固,也为下一章 教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了 的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。
(二)、学情分析
通过前一阶段的教学,学生对 的认识已有了一定的认知结构,主要体现在三个层面:
知识层面:学生在已初步掌握了 。
能力层面:学生在初步已经掌握了用
初步具备了 思想。 情感层面:学生对数学新内容的学习有相当的兴趣和积极性。但探究问题的能力以及合作交流等方面发展不够均衡.
(三)教学课时
本节内容分 课时学习。(本课时,品味数学中的和谐美,体验成功的乐趣。)
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高中生的认知规律,本节课的教学目标确定为:
知识与技能:
过程与方法:
情感态度:
(例如:创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。在自主探究与讨论交流过程中,培养学生的合作意识和创新精神. 通过 对立统一关系的认识,对学生进行辨证唯物主义教育)
在探索过程中,培养独立获取数学知识的能力。在解决问题的过程中,让学生感受到成功的喜悦,树立学好数学的信心。在解答数学问题时,让学生养成理性思维的品质。
三、重难点分析
重点确定为:
要把握这个重点。关键在于理解
其本质就是
本节课的难点确定为:
要突破这个难点,让学生归纳
作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学--建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思探究教学法”( 陕西师范大学教育研究所张熊飞教授)。在课堂教学中凸显学生主体地位的重要性,不再是以教师为中心去设计教学过程,而是以学生为主体去组织教学进程。把课堂真正地交给了学生,学生主体地位得以实现。
五、说教学过程
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景………………….
(二)比旧悟新………………….
(三)归纳提炼…………………
(四)应用新知,熟练掌握 …………………
(五)总结…………………
(六)作业布置…………………
(七)板书设计…………………
以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家批评指正。谢谢
著名美国数学家和数学教育家波利亚 包括“弄清问题”、“拟定计划”、“实现计划”和“回顾反思”四大步骤的解题全过程,它们就好比是寻找和发现解法的思维过程进行分解,使我们对解题的思维过程看得见,摸得着,易于操作。精髓是启发你去联想。联想什么?怎样联想?
高中数学说课稿范文2
【一】教学背景分析
1.教材结构分析
《圆的方程》安排在高中数学第二册(上)第七章第六节.圆作为常见的简单几何图形,在实际生活和生产实践中有着广泛的应用.圆的方程属于解析几何学的基础知识,是研究二次曲线的开始,对后续直线与圆的位置关系、圆锥曲线等内容的学习,无论在知识上还是方法上都有着积极的意义,所以本节内容在整个解析几何中起着承前启后的作用.
2.学情分析
圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.
根据上述教材结构与内容分析,考虑到学生已有的认知结构和心理特征,我制定如下教学目标:
3.教学目标
(1) 知识目标:①掌握圆的标准方程;
②会由圆的标准方程写出圆的半径和圆心坐标,能根据条件写出圆的标准方程;
③利用圆的标准方程解决简单的实际问题.
(2) 能力目标:①进一步培养学生用代数方法研究几何问题的能力;
②加深对数形结合思想的理解和加强对待定系数法的运用;
③增强学生用数学的意识.
(3) 情感目标:①培养学生主动探究知识、合作交流的意识;
②在体验数学美的过程中激发学生的学习兴趣.
根据以上对教材、教学目标及学情的分析,我确定如下的教学重点和难点:
4. 教学重点与难点
(1)重点:圆的标准方程的求法及其应用.
(2)难点: ①会根据不同的已知条件求圆的标准方程;
②选择恰当的坐标系解决与圆有关的实际问题.
为使学生能达到本节设定的教学目标,我再从教法和学法上进行分析:
好学教育:
【二】教法学法分析
1.教法分析 为了充分调动学生学习的积极性,本节课采用“启发式”问题教学法,用环环相扣的问题将探究活动层层深入,使教师总是站在学生思维的最近发展区上.另外我恰当的利用多媒体课件进行辅助教学,借助信息技术创设实际问题的情境既能激发学生的学习兴趣,又直观的引导了学生建模的过程.
2.学法分析 通过推导圆的标准方程,加深对用坐标法求轨迹方程的理解.通过求圆的标准方程,理解必须具备三个独立的条件才可以确定一个圆.通过应用圆的标准方程,熟悉用待定系数法求的过程. 下面我就对具体的教学过程和设计加以说明:
【三】教学过程与设计
整个教学过程是由七个问题组成的问题链驱动的,共分为五个环节:
创设情境 启迪思维 深入探究 获得新知 应用举例 巩固提高
反馈训练 形成方法 小结反思 拓展引申
下面我从纵横两方面叙述我的教学程序与设计意图.
首先:纵向叙述教学过程
(一)创设情境——启迪思维
问题一 已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
通过对这个实际问题的探究,把学生的思维由用勾股定理求线段CD的长度转移为用曲线的方程来解决.一方面帮助学生回顾了旧知——求轨迹方程的一般方法,另一方面,在得到汽车不能通过的结论的同时学生自己推导出了圆心在原点,半径为4的圆的标准方程,从而很自然的进入了本课的主题.用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望.这样获取的知识,不但易于保持,而且易于迁移.
通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节.
(二)深入探究——获得新知
问题二 1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
2.如果圆心在,半径为时又如何呢?
好学教育:
这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程.然后再让学生对圆心不在原点的情况进行探究.我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法.
得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节.
(三)应用举例——巩固提高
I.直接应用 内化新知
问题三 1.写出下列各圆的标准方程:
(1)圆心在原点,半径为3;
(2)经过点,圆心在点.
2.写出圆的圆心坐标和半径.
我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备.
II.灵活应用 提升能力
问题四 1.求以点为圆心,并且和直线相切的圆的方程.
2.求过点,圆心在直线上且与轴相切的圆的方程.
3.已知圆的方程为,求过圆上一点的切线方程.
你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是什么?
我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程.第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆.第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间.最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮.
III.实际应用 回归自然
问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).
好学教育:
我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识.
(四)反馈训练——形成方法
问题六 1.求过原点和点,且圆心在直线上的圆的标准方程.
2.求圆过点的切线方程.
3.求圆过点的切线方程.
接下来是第四环节——反馈训练.这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心.另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果.
(五)小结反思——拓展引申
1.课堂小结
把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:
圆心在原点时,半径为r 的圆的标准方程为:.
②已知圆的方程是,经过圆上一点的切线的方程是:.
2.分层作业
(A)巩固型作业:教材P81-82:(习题7.6)1,2,4.(B)思维拓展型作业:试推导过圆上一点的切线方程.
3.激发新疑
问题七 1.把圆的标准方程展开后是什么形式?
2.方程表示什么图形?
在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了.在知识的拓展中再次掀起学生探究的热情.另外它为下节课研究圆的一般方程作了重要的准备.
以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计
(一)突出重点 抓住关键 突破难点
好学教育:
求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点.
第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心.最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五.这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破.
(二)学生主体 教师主导 探究主线
本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终.从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的.另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务.
(三)培养思维 提升能力 激励创新
为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力.在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行.
以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变.最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”.
高中数学说课稿范文3
尊敬的各位专家,评委:
上午好!
根据新课改的理论标准,我将从教材分析,学情分析,教学目标分析,学法、教法分析,教学过程分析,以及板书设计这六个方面来谈谈我对教材的理解和教学的设计。
一、教材分析
地位和作用:
《______________________》是北师大版高中数学必修二的第______章“__________”的第________节内容。
本节是在学习了________________________________________之后编排的。通过本节课的学习,既可以对_________________________________的知识进一步巩固和深化,又可以为后面学习_________________________打下基础,所以_________________是本章的重要内容。此外,《________________________》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。
二、学情分析
1、学生已熟悉掌握______
2、学生的认知规律,是由整体到局部,具体到抽象发展的。
3、学生思维活跃,积极性高,已初步形成对数学问题的合作探究能力
4、学生层次参差不齐,个体差异还比较明显
三、教学目标分析
根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:
1、知识与技能:
2、过程与方法:通过___学习,体会__的思想,培养学生提出问题,分析问题,解决问题的能力,提高交流表达能力,提高独立获取知识的能力。
3、情感态度与价值观:培养把握空间图形的能力,欣赏空间图形所反应的数学美(认识数学内容之间的内在联系,加强数形结合的思想,形成正确的数学观)。
教学重点:
难点:
四、学法、教法分析
(一)学法
首先,通过自学探究,培养学生的分析、归纳能力,提高学生合作学习的能力,学生课堂中体现自我,学会寻找问题的突破口,在探究中学会思考,在合作中学会推进,在观察中学会比较,进而推进整个教学程序的展开。
其次,教学过程中,我想适时地根据学生的“最近发展区”搭建平台,充分发挥“教师的主导作用和学生的主体地位相统一的教学规律”,
从学生原有的知识和能力出发,指导学生学会观察、分析、归纳问题的能力。
学生只有不断地解决问题、产生成就感的过程中,才能真正地提高学习的兴趣,也只有这样才能“学”有新“思”,“思”有新“得”。
(二)教法
数学教育家波利亚曾经说过:“学习任何知识的最佳途径即是由自己去发现,因为这种发现理解最深刻,也最容易掌握其中的发展规律、性质和联系。”根据学生的认知特点和知识水平,为落实重点、突破难点,本着以人为本,以学为中心的思想,本节课我将采用启发式、合作探究的方式来进行教学。运用多媒体演示辅助教学的一种手段,以激发学生的求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现问题、分析问题和解决问题。
五、教学过程分析
1、创设情境,引入问题。
新课标指出:“应该让学生在具体生动的情境中学习数学”。在本节课的教学中,从我们熟悉的生活情境中提出问题,问题的设计改变了传统目的明确的设计方式,给学生最大的思考空间,充分体现学生主体地位。
2、发现问题,探究新知。
数学概念的形成来自解决实际问题和数学自身发展的需要.但概念的高度抽象,造成了难懂、难教和难学,这就需要让学生置身于符合自身实际的学习活动中去,从自己的经验和已有的知识基础出发,经历
“数学化”、“再创造”的活动过程.
3、深入探究,加深理解。
有效的数学学习过程,不能单纯的模仿与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经历和实践体验,师生互动学习,生生合作交流,共同探究.
4、当堂训练,巩固提高。
通过学生的主体参与,使学生深切体会到本节课的主要内容和思想方法,从而实现对知识识的再次深化。
5、小结归纳,拓展深化。
小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。
6、作业设计
作业分为必做题和选做题。
针对学生能力和水平的差异,进行分层训练,在所有学生获得共同知识基础和基本能力的同时,让学有余力的学生将学习从课堂延伸到课外,获得更大的能力提升,这体现新课改理念,也是因材施教的教学原则的具体运用。
现代数学教学观和新课改要求教学能从“让学生学会”向“让学生会学”转变,使数学教学真正成为数学活动的教学。所以,本节课我们不仅仅是单纯的传授知识,而更应该重视对数学方法的渗透。从熟悉的知识出发,学生自主探索、合作交流激发学生的学习兴趣,突破难点,培养学生发现问题、解决问题的能力
六、板书设计
板书要基本体现整堂课的内容与方法,体现课堂进程,能简明扼要反映知识结构及其相互联系;突出本节重难点,能指导教师的教学进程、引导学生探索知识,启迪学生思维。
我的说课到此结束,敬请各位专家、评委批评指正。
谢谢!
高中数学说课稿范文4
各位评委老师好:今天我说课的题目是
是必修章第节的内容,我将以新课程标准的理念指导本节课的教学,从教材分析,教法学法,教学过程,教学评价四个方面加以说明。
一、 教材分析
是在学习了基础上进一步研究 并为后面学习 做准备,在整个
高中数学中起着承上启下的作用,因此本节内容十分重要。
根据新课标要求和学生实际水平我制定以下教学目标
1、 知识能力目标:使学生理解掌握
2、 过程方法目标:通过观察归纳抽象概括使学生构建领悟 数学思想,培养 能力
3、 情感态度价值观目标:通过学习体验数学的科学价值和应用价值,培养善于
观察勇于思考的学习习惯和严谨 的科学态度
根据教学目标、本节特点和学生实际情况本节重点是 ,由于学生对 缺少感性认识,所以本节课的重点是
二、教法学法
根据教师主导地位和学生主体地位相统一的规律,我采用引导发现法为本节课的主要教学方法并借助多媒体为辅助手段。在教师点拨下,学生自主探索、合作交流来寻求解决问题的方法。
三、 教学过程
四、 教学程序及设想
1、由……引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。 在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:……
2、由实例得出本课新的知识点是:……
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习……
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
五、教学评价
学生学习的学习结果评价当然重要,但是更重要的是学生学习的过程评价,教师应
当高度重视学生学习过程中的参与度、自信心、团队精神合作意识数学能力的发现,以及学习的兴趣和成就感。
高中数学说课稿范文5
一、教材分析:
集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。
二、目标分析:
教学重点、难点
重点:集合的含义与表示方法。
难点:表示法的恰当选择。
教学目标
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性。互异性。无序性;
(4)会用集合语言表示有关数学对象;
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。
(2)让学生归纳整理本节所学知识。
3. 情感、态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性。
三、教法分析
1. 教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。
2. 教学手段:在教学中使用投影仪来辅助教学。
四、过程分析
(一)创设情景,揭示课题
1、教师首先提出问题:
(1)介绍自己的家庭、原来就读的学校、现在的班级。
(2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?
引导学生互相交流。 与此同时,教师对学生的活动给予评价。
2.活动:
(1)列举生活中的集合的例子;
(2)分析、概括各实例的共同特征
由此引出这节要学的内容。
设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫
(二)研探新知,建构概念
1.教师利用多媒体设备向学生投影出下面7个实例:
(1)1-20以内的所有质数;
(2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
(5)海南省在20xx年9月之前建成的所有立交桥;
(6)到一个角的两边距离相等的所有的点;
(7)国兴中学20xx年9月入学的高一学生的全体。
2.教师组织学生分组讨论:这7个实例的共同特征是什么?
3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。
一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。
设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神
(三)质疑答辩,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)大于3小于11的偶数;
(2)我国的小河流。
让学生充分发表自己的建解。
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。
4.教师提出问题,让学生思考
(1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。
如果是集合A的元素,就说属于集合A,记作。
如果不是集合A的元素,就说不属于集合A,记作。
(2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。
(3)让学生完成教材第6页练习第1题。
5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。
6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:
(1)要表示一个集合共有几种方式?
(2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?
(3)如何根据问题选择适当的集合表示法?
使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。
设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。
(四)巩固深化,反馈矫正
教师投影学习:
(1)用自然语言描述集合{1,3,5,7,9};
(2)用例举法表示集合
(3)试选择适当的方法表示下列集合:教材第6页练习第2题。
设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象(五)归纳小结,布置作业
小结:在师生互动中,让学生了解或体会下例问题:
1.本节课我们学习了哪些知识内容?
2.你认为学习集合有什么意义?
3.选择集合的表示法时应注意些什么?
设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。
作业:
1.课后书面作业:第13页习题1.1A组第4题。
2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。
高中数学说课稿范文6
各位老师:
大家好!我叫张西元。我说课的题目是《系统抽样》,内容选自于苏教版必修3第二章第一节,课时安排为一个课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
学生已初步了解掌握了简单随机抽样的两种方法,即抽签法与随机数表法,在此基础上进一步学习系统抽样,它也是“统计学”的重要组成部分,通过对系统抽样的学习,更加突出统计在日常生活中的应用,体现它在中学数学中的地位。
2 教学的重点和难点
重点:正确理解系统抽样的概念,能够灵活应用系统抽样的方法解决统计问题。难点:当 不是整数时的处理办法,个体编号具有某种周期性时,“坏样本”的理解。
二、教学目标分析
1.知识与技能目标:
(1)正确理解系统抽样的概念;
(2)掌握系统抽样的一般步骤;
(3)正确理解系统抽样与简单随机抽样的关系;
2、过程与方法目标:
通过对实际问题的探究,归纳应用数学知识解决实际问题的方法,理解分类讨论的数学方法高考资源
3、情感态度与价值观目标:
通过数学活动,感受数学对实际生活的需要,体会现实世界和数学知识的联系
三、教学方法与手段分析
1.教学方法:为了充分让学生自己分析、判断、自主学习、合作交流。因此,我采用讨论发现法教学。
2.教学手段:通过各种教学媒体(计算机)调动学生参与课堂教学的主动性与积极性。
四、教学过程分析
(一)新课引入
1、复习提问:
(1)什么是简单随机抽样?有哪两种方法?
(2)抽签法与随机数表法的一般步骤是什么?
(3)简单随机抽样应注意哪两个原则?
(4)什么样的总体适合简单随机抽样?为什么?
[设计意图]通过复习提问进一步理解掌握简单随机抽样的概念方法和步骤?为新课学习打基础
2、实例探究
实例:某学校为了了解高一年级学生对教师教学的意见,打算从高一年级500名学生中抽取50名进行调查,除了用简单随机抽样获取样本外,你能否设计其他抽取样本的方法?
当总体数量较多时,应当如何抽取?结合具体事例探究问题,设计你的抽取样本的方法。抽取的样本公平性与代表性如何?学生自主探究后小组讨论回答。
[设计意图]通过设置问题情境,让学生参与问题解决的全过程,引导学生探究发现新知识新方法,完成从总体中抽取样本,并发现“等距抽样”的特性,从而形成感性的系统抽样的概念与方法。这样做既充分体现学生的主体地位和教师的主导作用,同时也较好地贯彻新课程所倡导“自主探究、合作交流”的学习方式。
(二)新课讲授
1、系统抽样的概念方法步骤
(学生阅读课本上的内容,教师引导学生总结归纳得出“系统抽样”的概念,并点明课题)
[设计意图]经历实例探究过程,学生对系统抽样的概念方法步骤应有大致了解,辅以教师引导,从具体到一般,本节新课题的学习便水到渠成。
2、典型例题精析
例1、某校高中三年级的300名学生已经编号为1,2,……,300,为了了解学生的学习情况,要按10%的比例抽取一个样本,请用系统抽样的方法进行抽取,并写出过程。
(教师题意分析,引导学生应用新知识新方法,学生分析思考,探究解题,小组讨论后口述解题过程)
[设计意图]实例巩固,在得出新课的有关知识之后,再次让学生在解决实际问题的过程中,进一步理解掌握系统抽样的方法步骤,达到学以致用的技能,培养“学数学,用数学”的意识。
例2、某单位在职职工共624人,为了调查工人用于上班途中的时间,决定抽取10%的工人进行调查,试采用系统抽样方法抽取所需的样本。
[设计意图]当 不是整数时,设置本题让学生尝试回答,并形成一般思路与方法。
(三) 练习巩固
1、将全班学生按男女生交替排成一路纵队,用掷骰的方法在前6名学生中任选一名,用 表示该名学生在队列中的序号,将队列中序号为 ,(k=1,2,3,…)的学生抽出作为样本,这种抽样方法叫做系统抽样吗?为什么?其样本的代表性与公平性如何?
2、若按体重大小次序排成一路纵队呢?
[设计意图]配合课本第60页“边空”问题:“请将这种抽样方法与简单随机抽样做一个比较,你认为系统抽样能提高样本的代表性吗?为什么?”,帮助理解个体编号具有某种周期性时,样本代表性较差的特点。同时分析系统抽样的优点与缺点。
(四)回顾小结
1、师生共同回顾系统抽样的概念方法与步骤
2、与简单随机抽样比较,系统抽样适合怎样的总体情况?
3、当 不是整数时,一般步骤是什么?此时样本的公平性与代表性如何?
(五)布置作业
课本第61页的练习第1,2,3题
设计意图:课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。
高中数学说课稿范文7
各位评委老师,大家好!
今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》(可以在这时候板书课题,以缓解紧张)。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。
一、教材分析
1、教材的地位和作用
(1)本节课主要对函数单调性的学习;
(2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)
(3)它是历年高考的热点、难点问题
(根据具体的课题改变就行了,如果不是热点难点问题就删掉)
2、教材重、难点
重点:函数单调性的定义
难点:函数单调性的证明
重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)
二、教学目标
知识目标:(1)函数单调性的定义
(2)函数单调性的证明
能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想
情感目标:培养学生勇于探索的精神和善于合作的意识
(这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)
三、教法学法分析
1、教法分析
“教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法
2、学法分析
“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。
(前三部分用时控制在三分钟以内,可适当删减)
四、教学过程
1、以旧引新,导入新知
通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)
2、创设问题,探索新知
紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。
让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。
让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。
3、例题讲解,学以致用
例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式
例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。
例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。
学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。
4、归纳小结
本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。
5、作业布置
为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2
6、板书设计
我力求简洁明了地概括本节课的学习要点,让学生一目了然。
(这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)
五、教学评价
本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。
高中数学说课稿范文8
大家好,今天我向大家说课的题目是《正弦定理》。下面我将从以下几个方面介绍我这堂课的教学设计。
一、教材分析
本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理和余弦定理的知识非常重要。
根据上述教材内容分析,考虑到学生已有的认知结构心理特征及原有知识水平,制定如下教学目标:
认知目标:通过创设问题情境,引导学生发现正弦定理的内容,掌握正弦定理的内容及其证明方法,使学生会运用正弦定理解决两类基本的解三角形问题。
能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题转化为代数问题。
情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,激发学生学习的兴趣。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。 教学难点:已知两边和其中一边的对角解三角形时判断解的个数。
二、教法
根据教材的内容和编排的特点,为是更有效地突出重点,空破难点,以学业生的发展为本,遵照学生的认识规律,本讲遵照以教师为主导,以学生为主体,训练为主线的指导思想, 采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
三、学法
指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,增强学生由特殊到一般的数学思维能力,形成了实事求是的科学态度,增强了锲而不舍的求学精神。
四、教学过程
(一)创设情境(3分钟)
“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
(二)猜想—推理—证明(15分钟)
激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。 提问:那结论对任意三角形都适用吗?(让学生分小组讨论,并得出猜想)
在三角形中,角与所对的边满足关系
注意:1.强调将猜想转化为定理,需要严格的理论证明。
2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。
3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。
(三)总结--应用(3分钟)
1.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。
2.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。
(四)讲解例题(8分钟)
1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.
例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。
2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.
例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中
一边的对角时解三角形的各种情形。完了把时间交给学生。
(五)课堂练习(8分钟)
1.在△ABC中,已知下列条件,解三角形. (1)A=45°,C=30°,c=10cm (2)A=60°,B=45°,c=20cm
2. 在△ABC中,已知下列条件,解三角形. (1)a=20cm,b=11cm,B=30° (2)c=54cm,b=39cm,C=115°
学生板演,老师巡视,及时发现问题,并解答。
(六)小结反思(3分钟)
1.它表述了三角形的边与对角的正弦值的关系。
2.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。
3.会用向量作为数形结合的工具,将几何问题转化为代数问题。
五、教学反思
从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。
高中数学说课稿范文9
一、教材分析
1、教材所处的地位和作用
奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。
奇偶性是函数的一条重要性质,教材从学生熟悉的 及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。因此,本节课起着承上启下的重要作用。
2、学情分析
从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。
从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、
3、教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
1、能判断一些简单函数的奇偶性。
2、能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,感受数学的对称美。
从课堂反应看,基本上达到了预期效果。
4、教学重点和难点
重点:函数奇偶性的概念和几何意义。
几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了考虑函数定义域的问题。因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。因此,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
难点:奇偶性概念的数学化提炼过程。
由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了一定的困难。因此我把奇偶性概念的数学化提炼过程设计为本节课的难点。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上达到了预期效果。
2、学法
让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下面我对这六个环节进行说明。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。通过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1 、2 数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,再用数学符号表示。借助课件演示(令 比较 得出等式 , 再令 ,得到 ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。 最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三) 学生探索、领会定义
探究3 下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1判断下列函数的奇偶性
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:
(1) 先求定义域,看是否关于原点对称;
(2) 再判断f(-x)=-f(x) 还是 f(-x)=f(x)。
例2 判断下列函数的奇偶性:
例3 判断下列函数的奇偶性:
例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?
例4(1)判断函数的奇偶性。
(2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)总结反馈
在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(六)分层作业,学以致用
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1、3A组第6题。
思考题:课本第39页习题1、3B组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
高中数学说课稿范文10
各位教师:
今天我说课的题目是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课《向量的加法》,我从以下几个方面阐述本课的教学设计。
一、教材分析:
《向量的加法》是《必修》4第二章第二单元中“平面向量的线性运算”的第一节课。本节内容有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在“平面向量”及“空间向量”中有很重要的地位。
二、学情分析:
学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,知道向量可以自由移动,这是学习本节内容的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可通过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。
三、教学目的:
1、通过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。
2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。
3、通过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。
四、教学重、难点
重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,但是三角形法则适用范围更加广泛,且简便易行,所以是详讲内容,平行四边形法则在本课中所占份量略少于三角形法则。
难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。
五、教学方法
本节采用以下教学方法:1、类比:由数的加法运算类比向量的加法运算。2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;通过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。
六、数学思想的体现:
1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。
2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从对比中看出两者的不同,效果较好。
3、归纳思想:主要体现在以下三个环节①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都可以选用。②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。
七、教学过程:
1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情况,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。
2、引入新课:
(1)平行四边形法则的引入。
学生在物理学中虽然接触过位移的合成,但是并没有形成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,但是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要通过讲解例1,使学生认识到可以通过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。
设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易接受,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的“起点相同”这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。
(2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入(如图)。
所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还可以利用三角形法则来做。
这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都可以用。
设计意图:由平行四边形法则的图形引入三角形法则,可以很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,而且衔接自然,能够使学生对比地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。
(3)共线向量的加法
方向相同的两个向量相加,对学生来说较易完成,“将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。”引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。
方向相反的两个向量相加,对学生来说是个难点,首先从作图上不知道怎样做。但是学生学过有理数加法中的异号两数相加:“异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。”类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由老师引导学生尝试运用三角形法则去做,发现结论正确。
反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则。对有如下规定:
+
=
+
=
通过以上几个环节的讨论,可以作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。
设计意图:通过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不同位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,可以化解难点。
(4)向量加法的运算律
①交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。
②结合律:结合律是通过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。
接下来是对应的两个练习,运用交换律与结合律计算向量的和。
设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样可以运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最后一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。
3、小结
先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结内容,使学生印象更深。
(1)平行四边形法则:起点相同,适用于不共线向量的求和。
(2)三角形法则首尾相接,适用于任意多个向量的求和。
(3)运算律
交换律:
+
=
+
结合律:(
+
)+
=
+(
+
)
4、作业:P91,A组1、2、3。
《向量的加法》评课稿
本节所授内容基本与原先设想一致,评略得当,重点突出,难点化解。在两个加法则的引入、讲解及运用的处理方法、时间安排都把握得比较好,能够引导学生积极主动地探索平行四边形法则和三角形法则,使学生对两个加法法则形成了正确的认识,留下了深刻的印象,通过反馈练习,可以看出学生对两个法则的运用掌握的比较好,比较完整地实现了教学目标。
本节课的教学方法运用比较合理:采取了类比、探究、讲练结合及多媒体技术等多种方法。对数学课来说,本节课最显著的特点是将全部板书都移到了课件上,对我来说,是一次尝试,因为以前,我认为数学课没必要用课件,对全部利用课件上课更是不能接受。但是这次讲课改变了我的看法。从学生的反馈情况来看,这样处理对教学效果没有什么不良影响,反而使学生能更直观地理解两个加法法则和运算律,通过课件中的向量的平移,加深了学生对上节课所学的“相等向量”的概念的理解,也加大了课堂容量,还没有拥挤之感。从学生对内容小结的叙述看,没有板书,并没有妨碍本节内容在学生脑海中留下的印象。原先的设计中,板书设计也有,打在教案的后面。
通过这节课的讲授,我收获很多:首先,从课程的构思上,没有按照教参建议及网上普遍的编排方法先讲三角形法则,而是先由学生学过的力的合成引入了平行四边形法则,由此又引入三角形法则,效果也不错。可见,对教材的处理确实要根据学生情况,灵活裁剪,不能生搬硬套。
其次,通过这节课我感到,对有些与图形联系较多的课程,使用课件讲解简便易行,关键是要根据教学设计制作合适的课件,并且合理使用。
本节缺憾也很多。首先,学生活动还是偏少,没有充分、全面地调动学生热情。其次,语言不够精炼,有时比较啰嗦,也耽误了时间,第三,学生发言时,好打断学生,总觉得学生说得不清楚,抢学生话头,打击了学生课堂参与的积极性,很不好。
以上是我对这节课的反思,不到之处,请大家指点。
高中数学说课稿范文11
一.说教材
1.1 教材结构与内容简析
本节课为《江苏省中等职业学校试用教材数学(第二册)》5.6函数图象的定位作图法的第一课时,主要内容为基本函数 与一般函数 间的图象平移变换规律。
函数图象的平移,既是前阶段函数性质及具体函数研究的延续和深化,也是后阶段定位作图法以至解析几何中移轴化简的基础和渗透,在教材中起着重要的承上启下作用。更为重要的是,这段内容还蕴涵着重要的数学思想方法,如化归思想、映射与对应思想、换元方法等。
1.2 教学目标
1.2.1知识目标
⑴、给定平移前后函数解析式,能熟练叙述相应的平移变换,正确掌握平移方向与 、 符号的关系。
⑵、能较熟练地化简较复杂的函数解析式,找出对应的基本函数模型(如一次函数,反比例函数、指数函数等)。
⑶、初步学会应用平移变换规律研究较复杂的函数的具体性质(如值域、单调性等)。
1.2.2能力目标
⑴、在数学实验平台上,能自主探究,改变相应参数和函数解析式,观察相应图象变化,经历命题探索发现的过程,提高观察、归纳、概括能力。
⑵、结合学习中发现的问题,学会借助于数学软件等工具研究、探索和解决问题,学会数学
地解决问题。
⑶、渗透数学思想与方法(如化归、映射的思想,换元的方法)的学习,发展学生的非逻辑思维能力(合情推理、直觉等)。
1.2.3情感目标
培养学生积极参与、合作交流的主体意识,在知识的探索和发现的过程中,使学生感受数学学习的意义,改善学生的数学学习信念(态度、兴趣等)。
1.3 教材重点和难点处理思路
重点:函数图象的平移变换规律及应用
难点:经历数学实验方法探索平移对函数解析式的影响及如何利用平移变换规律化简函数解析式、研究复杂函数
教材在这段内容的处理上,注重直观性背景,注重学生丰富感性知识的获得,淡化形式化的逻辑推导和形式化的结果即平移公式。实际教学中,我们发现如果学生不经受足够的亲身体验而简单的记住结论的话,往往很难在形式化的解析式与具体的图象平移之间建立联系,并且移轴与移图象之间也容易搞混,说明这段内容不能采取简单的“告诉”方式,须让学生自主发现命题、发现规律,让他们“知其然,更要知其所以然。”
为了突出重点、突破难点,在教学中采取了以下策略:
⑴、从学生已有知识出发,精心设计一些适合学生学力的数学实验平台,分层次逐步引导学生观察图象的平移方向与函数解析式中 、 符号的关系,抽象、归纳出平移变换规律。 ⑵、创设情境,引发学生认知冲突,激发学生求知欲,能借助于数学软件多角度积极探求错误原因,使学生认识到形如 的函数须提取 前的系数化为 的形式,从而真正认识解析式形式化的特点。
⑶、数学实验采取小组合作研究共同完成简单实验报告的'形式,通过学生的自主探究、合作交流,从而实现对平移变换规律知识的建构。
二.说教法
针对职高一年级学生的认知特点和心理特征,在遵循启发式教学原则的基础上,本节课我主要采取以实验发现法为主,以讨论法、练习法为辅的教学方法,引导学生通过实验手段,从直观、想象到发现、猜想,亲历数学知识建构过程,体验数学发现的喜悦。
本节课的设计一方面重视学生数学学习过程是活动的过程,因此不是按照已形式化了的现成的数学规则去操作数学,而是采取数学实验的方式,使学生有机会经受足够的亲身体验,亲历知识的自主建构过程;使学生学会从具体情境中提取适当的概念,从观察到的实例中进行概括,进行合理的数学猜想与数学验证,并作更高层次的数学概括与抽象;从而学会数学地思考。
另一方面,注重创设机会使学生有机会看到数学的全貌,体会数学的全过程。整堂课的设计围绕研究较复杂函数的性质展开,以问题“函数 的性质如何”为主线,既让学生清楚研究函数图象平移的必要性,明确学习目标,又让学生初步学会如何应用规律解决问题,体会知识的价值,增强求知欲。
总之,本节课采用数学实验发现教学,学生采取小组合作的形式自主探究;利用实物投影进行集体交流,及时反馈相关信息。
三.说学法
“学之道在于悟,教之道在于度。”学生是学习的主体,教师在教学过程中须将学习的主动权交给学生。
美国某大学有一句名言:“让我听见的,我会忘记;让我看见的,我就领会了;让我做过的,我就理解了。”通过学生的自主实验,在探索新知的经历和获得新知的体验的基础之上,真正正确掌握平移方向。
教师的“教”不仅要让学生“学会知识”,更主要的是要让学生“会学知识”。正如荷兰数学教育家弗赖登塔尔所指出,“数学知识既不是教出来的,也不是学出来的,而是研究出来的。”本节课的教学中创设利于学生发现数学的实验情境,让学生自主地“做数学”,将传统意义下的“学习”数学改变为“研究”数学。从而,使传授知识与培养能力融为一体,在转变学习方式的同时学会数学地思考。
四.说程序
4.1创设情境,引入课题
在简要回顾前面研究的具体函数(指数函数、幂函数、三角函数等)性质后,提出问题“如何研究 的性质?”
引导学生讨论后,总结出两种思路,即:思路1、通过描点法作出函数的图象,借助于图象研究相关性质;思路2、将 的性质问题化归为 的问题,借助于基本函数 的性质解决新问题。
从而自然地引出课题,关键是找出 与 的关系,尤其是图象间的联系。更一般地,就是基本函数 与 间的联系。
4.2数学实验,自主探索
这一环节主要分两阶段。
1、尝试初探
引例、函数 与 图象间的关系
这一阶段主要由教师讲解,学生观察发现,意在突出两函数图象形状相同、位置不同,后者可以由前者平移得到。
讲解时,利用几何画板的度量功能,给出两个对应点的坐标,易于学生发现点的坐标关系,并给出相应的辅助线,一方面便于学生发现规律,另一方面也是为后面定位作图法的学习作好铺垫。
2、实验发现
本阶段由学生以小组合作探索的形式完成,通过填写实验报告的形式完成探索规律的任务。 实验1、试改变实验平台1中的参数 、 ,观察由 的图象到 的变换现象,依照给出的样例填写下表,并总结其中的平移变换规律。
函数 解析式平移变换规律12向左平移2个单位,向上平移1个单位 实验结论
高中数学说课稿范文12
各位老师:
大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教A版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:
一、教材分析
1.教材所处的地位和作用
现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。
2.教学的重点和难点
重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。
二、教学目标分析
1.知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。
2.能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。
3.情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。
三、教学方法分析
采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。
四、学情分析
算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。
五、教学过程分析
1.创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法".
「设计意图」是为了充分挖掘章头图的教学价值,体现
1)算法概念的由来;
2)我们将要学习的算法与计算机有关;
3)展示中国古代数学的成就;
4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)
2.引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的概念做好铺垫。
之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)
3.例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。
这两道例题均选自课本的例1和例2.
例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在"重复".为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:
(1)写出的算法必须能解决一类问题,并且能够重复使用。
(2)要使算法尽量简单、步骤尽量少。
(3)要保证算法正确,且计算机能够执行。
在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)
4.课堂小结:
(1)算法的概念和算法的基本特征
(2)算法的描述方法,算法可以用自然语言描述。
(3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)
5.布置作业:课本练习1、2题
课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。
高中数学说课稿范文13
一、教材分析
本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。
从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。
二、教学目标
根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:
知识与技能:
1. 知道最小二乘法和回归分析的思想;
2. 能根据线性回归方程系数公式求出回归方程
过程与方法:
经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。
情感态度与价值观
通过合作学习,养成倾听别人意见和建议的良好品质
三、重点难点分析:
根据目标分析,确定教学重点和难点如下:
教学重点:
1. 知道最小二乘法和回归分析的思想;
2.会求回归直线
教学难点:
建立回归思想,会求回归直线
四、教学设计
提出问题
理论探究
验证结论
小结提升
应用实践
作业设计
教学环节
内容及说明
创设情境
探究:在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据:
问题与引导设计
师生活动
设计意图
问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?
教师提问,学生
通过动手操作得
出散点图并回答
以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。
教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.
问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,
乙,丙三个同学的判断有什么看法?
学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一
该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。
问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多
在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题
通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。
学生可能提出的问题:
①为什么甲、丙同学的判断结果正确的可能性较大,而乙同学判断结果正确的可能性较小?
②某人年龄在65岁时体内脂肪含量百分比最可能是多少?在其它年龄时呢?
③这些样本数据揭示出两个相关变量之间怎样的关系呢?
④怎样用数学的方法研究变量之间的相关关系呢?每个问题都是学生“火热的思考”成果
高中数学说课稿范文14
高三第一阶段复习,也称“知识篇”。在这一阶段,学生重温高一、高二所学课程,全面复习巩固各个知识点,熟练掌握基本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第一轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯通。对于普通高中的学生,第一轮复习更为重要,我们希望能做高考试题中一些基础题目,必须侧重基础,加强复习的针对性,讲求实效。
一、内容分析说明
1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他部分有密切的联系:
(1)二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。
(2)二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。
(3)二项式定理是解决某些整除性、近似计算等问题的一种方法。
2、高考中二项式定理的试题几乎年年有,多数试题的难度与课本习题相当,是容易题和中等难度的
试题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的
近似值。
二、学校情况与学生分析
(1)我校是一所镇普通高中,学生的基础不好,记忆力较差,反应速度慢,普遍感到数学难学。但大部分学生想考大学,主观上有学好数学的愿望。
(2)授课班是政治、地理班,学生听课积极性不高,听课率低(60﹪),注意力不能持久,不能连续从事某项数学活动。课堂上喜欢轻松诙谐的气氛,大部分能机械的模仿,部分学生好记笔记。
三、教学目标
复习课二项式定理计划安排两个课时,本课是第一课时,主要复习二项展开式和通项。根据历年高考对这部分的考查情况,结合学生的特点,设定如下教学目标:
1、知识目标:(1)理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。
(2)会运用展开式的通项公式求展开式的特定项。
2、能力目标:(1)教给学生怎样记忆数学公式,如何提高记忆的持久性和准确性,从而优化记忆品质。记忆力是一般数学能力,是其它能力的基础。
(2)树立由一般到特殊的解决问题的意识,了解解决问题时运用的数学思想方法。
3、情感目标:通过对二项式定理的复习,使学生感觉到能掌握数学的部分内容,树立学好数学的信心。有意识地让学生演练一些历年高考试题,使学生体验到成功,在明年的高考中,他们也能得分。
四、教学过程
1、知识归纳
(1)创设情景:①同学们,还记得吗? 、 、 展开式是什么?
②学生一起回忆、老师板书。
设计意图:①提出比较容易的问题,吸引学生的注意力,组织教学。
②为学生能回忆起二项式定理作铺垫:激活记忆,引起联想。
(2)二项式定理:①设问 展开式是什么?待学生思考后,老师板书
= C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)
②老师要求学生说出二项展开式的特征并熟记公式:共有 项;各项里a的指数从n起依次减小1,直到0为止;b的指数从0起依次增加1,直到n为止。每一项里a、b的指数和均为n。
③巩固练习 填空
设计意图:①教给学生记忆的方法,比较分析公式的特点,记规律。
②变用公式,熟悉公式。
(3) 展开式中各项的系数C , C , C ,… , 称为二项式系数.
展开式的通项公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展开式中第r+1项.
2、例题讲解
例1求 的展开式的第4项的二项式系数,并求的第4项的系数。
讲解过程
设问:这里 ,要求的第4项的有关系数,如何解决?
学生思考计算,回答问题;
老师指明①当项数是4时, ,此时 ,所以第4项的二项式系数是 ,
②第4项的系数与的第4项的二项式系数区别。
板书
解:展开式的第4项
所以第4项的系数为 ,二项式系数为 。
选题意图:①利用通项公式求项的系数和二项式系数;②复习指数幂运算。
例2 求 的展开式中不含的 项。
讲解过程
设问:①不含的 项是什么样的项?即这一项具有什么性质?
②问题转化为第几项是常数项,谁能看出哪一项是常数项?
师生讨论 “看不出哪一项是常数项,怎么办?”
共同探讨思路:利用通项公式,列出项数的方程,求出项数。
老师总结思路:先设第 项为不含 的项,得 ,利用这一项的指数是零,得到关于 的方程,解出 后,代回通项公式,便可得到常数项。
板书
解:设展开式的第 项为不含 项,那么
令 ,解得 ,所以展开式的第9项是不含的 项。
因此 。
选题意图:①巩固运用展开式的通项公式求展开式的特定项,形成基本技能。
②判断第几项是常数项运用方程的思想;找到这一项的项数后,实现了转化,体现转化的数学思想。
例3求 的展开式中, 的系数。
解题思路:原式局部展开后,利用加法原理,可得到展开式中的 系数。
板书
解:由于 ,则 的展开式中 的系数为 的展开式中 的系数之和。
而 的展开式含 的项分别是第5项、第4项和第3项,则 的展开式中 的系数分别是: 。
所以 的展开式中 的系数为
例4 如果在( + )n的展开式中,前三项系数成等差数列,求展开式中的有理项.
解:展开式中前三项的系数分别为1, , ,
由题意得2× =1+ ,得n=8.
设第r+1项为有理项,T =C · ·x ,则r是4的倍数,所以r=0,4,8.
有理项为T1=x4,T5= x,T9= .
3、课堂练习
1.(20xx年江苏,7)(2x+ )4的展开式中x3的系数是
A.6B.12 C.24 D.48
解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系数为C ·22=24.
答案:C
2.(20xx年全国Ⅰ,5)(2x3- )7的展开式中常数项是
A.14 B.14 C.42 D.-42
解析:设(2x3- )7的展开式中的第r+1项是T =C (2x3) (- )r=C 2 ·
(-1)r·x ,
当- +3(7-r)=0,即r=6时,它为常数项,∴C (-1)6·21=14.
答案:A
3.(20xx年湖北,文14)已知(x +x )n的展开式中各项系数的和是128,则展开式中x5的系数是_____________.(以数字作答)
解析:∵(x +x )n的展开式中各项系数和为128,
∴令x=1,即得所有项系数和为2n=128.
∴n=7.设该二项展开式中的r+1项为T =C (x ) ·(x )r=C ·x ,
令 =5即r=3时,x5项的系数为C =35.
答案:35
五、课堂教学设计说明
1、这是一堂复习课,通过对例题的研究、讨论,巩固二项式定理通项公式,加深对项的系数、项的二项式系数等有关概念的理解和认识,形成求二项式展开式某些指定项的基本技能,同时,要培养学生的运算能力,逻辑思维能力,强化方程的思想和转化的思想。
2、在例题的选配上,我设计了一定梯度。第一层次是给出二项式,求指定的项,即项数已知,只需直接代入通项公式即可(例1);第二层次(例2)则需要自己创造代入的条件,先判断哪一项为所求,即先求项数,利用通项公式中指数的关系求出,此后转化为第一层次的问题。第三层次突出数学思想的渗透,例3需要变形才能求某一项的系数,恒等变形是实现转化的手段。在求每个局部展开式的某项系数时,又有分类讨论思想的指导。而例4的设计是想增加题目的综合性,求的n过程中,运用等差数列、组合数n等知识,求出后,有化归为前面的问题。
六、个人见解
高中数学说课稿范文15
开始:各位专家领导, 好!
今天我将要为大家讲的课题是
首先,我对本节教材进行一些分析
一、教材结构与内容简析
本节内容在全书及章节的地位:《 》是高中数学新教材第 册( )第 章第 节。在此之前,学生已学习了
,这为过渡到本节的学习起着铺垫作用。本节内容是 部分,因此,在 中,占据 的地位。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:
二、 教学目标
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
1 基础知识目标:
2 能力训练目标:
3 创新素质目标:
4 个性品质目标:
三、 教学重点、难点、关键
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点: 通过 突出重点
难点: 通过 突破难点
关键:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
四、 教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生
“知其然”而且要使学生“知其所以然”,
我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:
,应着重采用 的教学方法。即:
五、 学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
1、理论:
2、实践:
3、能力:
最后我来具体谈一谈这一堂课的教学过程:
六、 教学程序及设想
1、由 引入:
把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。
在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。
对于本题:
2、由实例得出本课新的知识点是:
3、讲解例题。
我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:
4、能力训练。
课后练习
使学生能巩固羡慕自觉运用所学知识与解题思想方法。
5、总结结论,强化认识。
知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
6、变式延伸,进行重构。
重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。
7、板书。
8、布置作业。
针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。说课对我们大家仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
注意时间掌握
六、注意灵活导入新知识点。
电脑课件
使用投影
根据时间进行增删
【高中数学说课稿范文15篇】相关文章: