高中数学说课稿

时间:2024-08-28 09:55:12 毅霖 高中说课稿 我要投稿

高中数学说课稿(精选20篇)

  作为一名优秀的教育工作者,通常需要用到说课稿来辅助教学,说课稿有助于提高教师理论素养和驾驭教材的能力。那么什么样的说课稿才是好的呢?以下是小编为大家整理的高中数学说课稿,仅供参考,大家一起来看看吧。

高中数学说课稿(精选20篇)

  高中数学说课稿 1

  一、教材分析

  1.教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《1.3.1柱体、锥体、台体的表面积》是高中数学教材数学2第一章空间几何体3节内容。在此之前学生已学习了空间几何体的结构、三视图和直观图为基础,这为过渡到本节的学习起着铺垫作用。本节内容是在空间几何中,占据重要的地位。以及为其他学科和今后的学习打下基础。

  2.教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  知识与能力:

  (1)了解柱体、锥体、台体的表面积。

  (2)能用公式求柱体、锥体、台体的表面积。

  (3)培养学生空间想象能力和思维能力。

  过程与方法:

  让学生经历几何体的表面积的实际求法,感知几何体的形状,培养学生对数学问题的转化化归能力。

  情感、态度与价值观:

  通过学习,是学生感受到几何体表面积的求解过程,激发学生探索、创新意识,增强学习积极性。

  3.重点,难点以及确定依据:

  本着新课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。

  教学重点:柱,锥,台的表面积公式的推导。

  教学难点:柱,锥,台展开图与空间几何体的转化。

  二、教法分析

  1.教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用合作探究、小组讨论的教学方法。

  2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的探究式讨论教学法。在学生亲自动手去给出各种几何体的表面积的.计算方法,特别注重不同解决问题的方法,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  三、学情分析

  我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散。

  (2)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  最后我来具体谈谈这一堂课的教学过程:

  四、教学过程分析

  (1)由一段动画视频引入:丰富生动的吸引学生的注意力,调动学生学习积极性。

  (2)由引入得出本课新的所要探讨的问题——几何体的表面积的计算。

  (3)探究问题。完全将主动权教给学生,让学生主动去探究,得到解决问题的思路,锻炼学生动手能力,解决实际问题能力。

  (4)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

  (5)例题及练习,见学案。

  (6)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。

  (7)小结:让学生总结本节课的收获。老师适时总结归纳。

  高中数学说课稿 2

  一、背景分析

  1、学习任务分析:充要条件是中学数学中最重要的数学概念之一,它主要讨论了命题的条件与结论之间的逻辑关系,目的是为今后的数学学习特别是数学推理的学习打下基础。

  教学重点:充分条件、必要条件和充要条件三个概念的定义。

  2、学生情况分析:从学生学习的角度看,与旧教材相比,教学时间的前置,造成学生在学习充要条件这一概念时的知识储备不够丰富,逻辑思维能力的训练不够充分,这也为教师的教学带来一定的困难,因此,新教材在第一章的小结与复习中,把学生的学习要求规定为“初步掌握充要条件”(注意:新教学大纲的教学目标是“掌握充要条件的意义”),这是比较切合教学实际的。由此可见,教师在充要条件这一内容的新授教学时,不可拔高要求追求一步到位,而要在今后的教学中滚动式逐步深化,使之与学生的知识结构同步发展完善。

  教学难点:“充要条件”这一节介绍了充分条件,必要条件和充要条件三个概念,由于这些概念比较抽象,中学生不易理解,用它们去解决具体问题则更为困难,因此”充要条件”的教学成为中学数学的难点之一,而必要条件的定义又是本节内容的难点。根据多年教学实践,学生对”充分条件”的概念较易接受,而必要条件的概念都难以理解。对于“B=A”,称A是B的必要条件难于接受,A本是B推出的结论,怎么又变成条件了呢?对这学生难于理解。

  教学关键:找出A、B,根据定义判断A=B与B=A是否成立。教学中,要强调先找出A、B,否则,学生可能会对必要条件难以理解。

  二、教学目标设计:

  (一)知识目标:

  1、正确理解充分条件、必要条件、充要条件三个概念。

  2、能利用充分条件、必要条件、充要条件三个概念,熟练判断四种命题间的关系。

  (二)能力目标:

  1、培养学生的观察与类比能力:“会观察”,通过大量的问题,会观察其共性及个性。

  2、培养学生的归纳能力:“敢归纳”,敢于对一些事例,观察后进行归纳,总结出一般规律。

  (三)情感目标:

  1、通过以学生为主体的教学方法,让学生自己构造数学命题,发展体验获取知识的感受。

  2、通过对命题的四种形式及充分条件,必要条件的相对性,培养同学们的辩证唯物主义观点。

  3、通过“会观察”,“敢归纳”,“善建构”,培养学生自主学习,勇于创新,多方位审视问题的创造技巧,敢于把错误的思维过程及弱点暴露出来,并在问题面前表现出浓厚的兴趣和不畏困难、勇于积极的精神。

  三、教学结构设计:

  数学知识来源于生活实际,生活本身又是一个巨大的数学课堂,我在教学过程中注重把教材内容与生活实践结合起来,加强数学教学的实践性,给数学找到生活的原型。我对本节课的数学知识结构进行创造性地“教学加工”,在教学方法上采用了“合作——探索”的开放式教学模式,使课堂教学体现“参与式”、“生活化”、“探索性”,保证学生对数学知识的主动获取,促进学生充分、和谐、自主、个性化的发展。

  整体思路为:教师创设情境,激发兴趣,引出课题,引导学生分析实例,给出定义,例题分析(采用开放式教学)知识小结,扩展例题,练习反馈。

  整个教学设计的主要特色:

  (1)由生活事例引出课题;

  (2)采用开放式教学模式;

  (3)扩展例题是分析生活中的名言名句,又将数学融入生活中。

  努力做到:“教为不教,学为会学”;要“授之以鱼”更要“授之以渔”。

  四、教学媒体设计:

  本节课是概念课,要避免单一的下定义作练习模式,应该努力使课堂元素更为丰富。这节课,我借助了多媒体课件,配合教学,添加了一些与例题相匹配的图片背景,以激发学生的学习兴趣,另外将学生的自编题利用多媒体课件展示出来分析,提高了课堂教学的效率。

  五、教学过程设计:

  第一,创设情境,激发兴趣,引出课题:

  考虑到高一学生学习这一章的知识储备不足,我利用日常生活中的具体事例来提出本课的问题,并与学生共同利用原有的知识分析,事例中包括几个问题,为后面定义的分析埋下伏笔。

  我用的第一个事例是:“做一件衬衫,需用布料,到布店去买,问营业员应该买多少?他说买3米足够了。”这样,就产生了“3米布料”与“做一件衬衫够不够”的关系。用这个事件目的是为了第二部分引导学生得出充分条件的.定义。这里要强调该事件包括:

  A:有3米布料;

  B:做一件衬衫够了。

  第二个事例是:“一人病重,呼吸困难,急诊住院接氧气。”就产生了“氧气”与“活命与否”的关系。用这个事件的目的是为了第二部分引导学生得出必要条件的定义。这里要强调该事件包括:

  A:接氧气;

  B:活了。

  用以上两个生活中的事例来说明数学中应研究的概念、关系,会使学生感到亲切自然,有助于提高兴趣和深入领会概念的内容,特别是它的必要性。

  第二,引导学生分析实例,给出定义。

  在第一部分激发起学生的学习兴趣后,紧接着开展第二部分,引导学生分析实例,让学生从事例中抽象出数学概念,得出本节课所要学习的充分条件和必要条件的定义。在引导过程中尽量放慢语速,结合事例帮助学生分析。

  得出定义之后,这里有必要再利用本课前面两节的“逻辑联结词”和“四种命题”的知识来加强对必要条件定义的理解。(用前面的例子来说即:“活了,则说明在输氧”)可记作:

  还应指出的是“必要条件”的定义,有如绕口令,要一次廓清,不可拖泥带水。这里,只要一下子“定义”清楚了,下边再解释“,A是B的必要条件”是怎么回事。这样处理,学生更容易接受“必要”二字。(因无A则无B,故欲有B,A是必要的)。

  当两个定义分别给出后,我又对它们之间的区别加以分析说明,(充分条件可能会有多余,浪费,必要条件可能还不足(以使事件B成立))从而顺理成章地引出充要条件的定义(既是必要条件,又是充分条件,就称为充分必要条件,简称充要条件,记作:。(不多不少,恰到好处)。使学生在此先对两个充分条件和必要条件两个概念的不同有了第一次的认识,第三部分再利用具体的数学事例来强化。

  高中数学说课稿 3

  一、教材地位与作用

  本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。因此,正弦定理的知识非常重要。

  二、学情分析

  作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。

  教学重点:正弦定理的内容,正弦定理的证明及基本应用。

  教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。

  根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标:

  教学目标分析:

  知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。

  能力目标:探索正弦定理的证明过程,用归纳法得出结论。

  情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。

  三、教法学法分析

  教法:采用探究式课堂教学模式,在教师的.启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。

  学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。

  四、教学过程

  (一)创设情境,布疑激趣

  “兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠A=47°,∠B=53°,AB长为1m,想修好这个零件,但他不知道AC和BC的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。

  (二)探寻特例,提出猜想

  1.激发学生思维,从自身熟悉的特例(直角三角形)入手进行研究,发现正弦定理。

  2.那结论对任意三角形都适用吗?指导学生分小组用刻度尺、量角器、计算器等工具对一般三角形进行验证。

  3.让学生总结实验结果,得出猜想:

  在三角形中,角与所对的边满足关系。

  这为下一步证明树立信心,不断的使学生对结论的认识从感性逐步上升到理性。

  (三)逻辑推理,证明猜想

  1.强调将猜想转化为定理,需要严格的理论证明。

  2.鼓励学生通过作高转化为熟悉的直角三角形进行证明。

  3.提示学生思考哪些知识能把长度和三角函数联系起来,继而思考向量分析层面,用数量积作为工具证明定理,体现了数形结合的数学思想。

  4.思考是否还有其他的方法来证明正弦定理,布置课后练习,提示,做三角形的外接圆构造直角三角形,或用坐标法来证明。

  (四)归纳总结,简单应用

  1.让学生用文字叙述正弦定理,引导学生发现定理具有对称和谐美,提升对数学美的享受。

  2.正弦定理的内容,讨论可以解决哪几类有关三角形的问题。

  3.运用正弦定理求解本节课引入的三角形零件边长的问题。自己参与实际问题的解决,能激发学生知识后用于实际的价值观。

  (五)讲解例题,巩固定理

  1.例1:在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形。

  例1简单,结果为唯一解,如果已知三角形两角两角所夹的边,以及已知两角和其中一角的对边,都可利用正弦定理来解三角形。

  2.例2:在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形。

  例2较难,使学生明确,利用正弦定理求角有两种可能。要求学生熟悉掌握已知两边和其中一边的对角时解三角形的各种情形。完了把时间交给学生。

  (六)课堂练习,提高巩固

  1.在△ABC中,已知下列条件,解三角形。

  (1)A=45°,C=30°,c=10cm(2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列条件,解三角形。

  (1)a=20cm,b=11cm,B=30°(2)c=54cm,b=39cm,C=115°

  学生板演,老师巡视,及时发现问题,并解答。

  (七)小结反思,提高认识

  通过以上的研究过程,同学们主要学到了那些知识和方法?你对此有何体会?

  1.用向量证明了正弦定理,体现了数形结合的数学思想。

  2.它表述了三角形的边与对角的正弦值的关系。

  3.定理证明分别从直角、锐角、钝角出发,运用分类讨论的思想。

  (从实际问题出发,通过猜想、实验、归纳等思维方法,最后得到了推导出正弦定理。我们研究问题的突出特点是从特殊到一般,我们不仅收获着结论,而且整个探索过程我们也掌握了研究问题的一般方法。在强调研究性学习方法,注重学生的主体地位,调动学生积极性,使数学教学成为数学活动的教学。)

  (八)任务后延,自主探究

  如果已知一个三角形的两边及其夹角,要求第三边,怎么办?发现正弦定理不适用了,那么自然过渡到下一节内容,余弦定理。布置作业,预习下一节内容。

  高中数学说课稿 4

  大家好!我叫xxx,来自xx。我说课的题目是《变量之间的相关关系》,内容选自于高中教材新课程人教A版必修3第二章第三节,课时安排为三个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法与手段分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用:

  本章我们所要学习的主要内容就是统计,在前面的章节中我们已经对统计的相关知识作了大致的了解。本节课我们要继续探讨的是变量之间的相关关系,它为接下来要学习的两个变量的线性相关打下基础。这是一个与现实实际生活联系很紧密的知识,在教师的引导下,可使学生认识到在现实世界中存在不能用函数模型描述的变量关系,从而体会研究变量之间的相关关系的重要性。

  2、教学的重点和难点:

  重点:

  ①通过收集现实问题中两个有关联变量的数据直观认识变量间的相关关系;

  ②利用散点图直观认识两个变量之间的线性关系。

  难点:

  ①变量之间相关关系的理解;

  ②作散点图和理解两个变量的正相关和负相关。

  二、教学目标分析

  1、知识与技能目标:

  通过收集现实问题中两个有关联变量的数据认识变量间的相关关系。

  2、过程与方法目标:

  明确事物间的相互联系。认识现实生活中变量间除了存在确定的关系外,仍存在大量的非确定性的相关关系,并利用散点图直观体会这种相关关系。

  3、情感态度与价值观目标:

  通过对事物之间相关关系的了解,让学生们认识到现实中任何事物都是相互联系的辩证法思想。

  三、教学方法与手段分析

  1、教学方法:结合本节课的教学内容和学生的认知水平,在教法上,我采用“问答探究”式的教学方法,层层深入。充分发挥教师的主导作用,让学生真正成为教学活动的主体。

  2、教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性。

  四、教学过程分析

  ㈠问题引出:

  请同学们如实填写下表(在空格中打“√”)

  然后回答如下问题:

  ①“你的数学成绩对你的物理成绩有无影响?”

  ②“如果你的数学成绩好,那么你的物理成绩也不会太差,如果你的数学成绩差,那么你的物理成绩也不会太好。”对你来说,是这样吗?同意这种说法的同学请举手。

  根据同学们回答的结果,让学生讨论:我们可以发现自己的数学成绩和物理成绩存在某种关系。(似乎就是数学好的,物理也好;数学差的,物理也差,但又不全对。)教师总结如下:

  物理成绩和数学成绩是两个变量,从经验看,由于物理学习要用到比较多的数学知识和数学方法。数学成绩的高低对物理成绩的高低是有一定影响的。但决非唯一因素,还有其它因素,如图所示(幻灯片给出):

  因此,不能通过一个人的数学成绩是多少就准确地断定他的物理成绩能达到多少。但这两个变量是有一定关系的,它们之间是一种不确定性的关系。如何通过数学成绩的结果对物理成绩进行合理估计有非常重要的现实意义。

  「设计意图」通过对身边事例的分析,引出我们今天将要学习的主要内容,由此可以激起学生们的学习兴趣,为接下来的学习打下良好的基础。

  ㈡探究新知

  1、概念形成

  教师提问:“像刚才这种情况在现实生活中是否还有?”学生们思考之后,请几位同学就提出的问题作出回答。老师就举出的例子,引导学生作出分析,然后由老师总结得出相关关系的概念。[两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系。]

  「设计意图」从现实生活入手,抓住学生们的注意力,引导学生分析得出概念,让学生真正参与到概念的形成过程中来。

  2、探究线性相关关系和其他相关关系

  「课件展示」

  例1在一次对人体脂肪和年龄关系的研究中,研究人员获得了一组样本数据:

  问题:针对于上述数据所提供的信息,你认为人体的脂肪含量与年龄之间有怎样的关系?

  [教师特别向学生强调在研究两个变量之间是否存在某种关系时,必须从散点图入手(向学生介绍什么是散点图)。并且引导学生从散点图上可以得出如下规律:(幻灯片给出)

  ①如果所有的样本点都落在某一函数曲线上,那么变量之间具有函数关系(确定性关系);

  ②如果所有的样本点都落在某一函数曲线的附近,那么变量之间具有相关关系(不确定性关系);

  ③如果所有的样本点都落在某一直线附近,那么变量之间具有线性相关关系(不确定性关系)。

  「设计意图」通过对这个典型事例的分析,向学生们介绍什么是散点图,并总结出如何从散点图上判断变量之间关系的规律。

  下面我们用TI图形计算器作出这两个变量的'散点图。

  学生实验:先把数据中成对出现的两个数分别作为横坐标、纵坐标,把数据输入到表格当中(第一列横坐标、第二列纵坐标);然后,用TI图形计算器作散点图:

  [引导学生观察作出的散点图,体会现实生活中两个变量之间的关系存在着不确定性。散点图中的散点并不在一条直线上,只是分布在一条直线的周围,即为线性相关关系。]

  「设计意图」通过实验让学生们感受散点图的主要形成过程,并由此引出线性相关关系。为后面回归直线和回归直线方程的学习做好铺垫。

  「课件展示」四组数据,请学生作出散点图,并观察每组数据的特点。

  根据四组数据,学生作出四个散点图。

  通过学生讨论、交流、用TI图形计算器展示、对比自己作出的散点图,我们引出线性相关关系,正负相关关系的概念。

  「设计意图」及时巩固知识,学生通过亲自动手作散点图,并交流讨论,进一步加深对散点图的理解,并由此引出正负相关关系的概念,突破难点。

  ㈢例题讲解,深化认识

  「课件展示」

  例2一般说来,一个人的身高越高,他的人就越大,相应地,他的右手一拃长就越长,因此,人的身高与右手一拃长之间存在着一定的关系。为了对这个问题进行调查,我们收集了北京市某中学20xx年高三年级96名学生的身高与右手一拃长的数据如下表。

  (1)根据上表中的数据,制成散点图。你能从散点图中发现身高与右手一拃长之间的近似关系吗?

  (2)如果近似成线性关系,请画出一条直线来近似地表示这种线性关系。

  (3)如果一个学生的身高是188cm,你能估计他的一拃大概有多长吗?

  「设计意图」这个例子很容易激起学生们的学习兴趣,由此可达到更好的教学效果。通过对这道题的解答,使对前面知识的认识更加牢固。

  ㈣反思小结、培养能力

  ⑴变量间相关关系、线性关系和正负相关关系

  ⑵如何做散点图

  「设计意图」小节是一堂课的概括和总结,有利于优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质,也更进一步培养学生的归纳概括能力

  ㈤课后作业,自主学习

  习题2.31、2

  [设计意图]课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  高中数学说课稿 5

  一、教材分析

  1、教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  (根据具体的课题改变就行了,如果不是热点难点问题就删掉)

  2、教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想。

  情感目标:培养学生勇于探索的精神和善于合作的意识。

  (这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化)

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  (前三部分用时控制在三分钟以内,可适当删减)

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的'数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、例题讲解,学以致用

  例1主要是对函数单调区间的巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组习题1.3A组1、2、3,二组习题1.3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  (这部分最重要用时六到七分钟,其中定义讲解跟例题讲解一定要说明学生的活动)

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

  高中数学说课稿 6

  一、教材分析

  1、教材所处的地位和作用

  奇偶性是人教A版第一章集合与函数概念的第3节函数的基本性质的第2小节。

  奇偶性是函数的一条重要性质,教材从学生熟悉的及入手,从特殊到一般,从具体到抽象,注重信息技术的应用,比较系统地介绍了函数的奇偶性。从知识结构看,它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。所以,本节课起着承上启下的重要作用。

  2、学情分析

  从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了必须数量的简单函数的储备。同时,刚刚学习了函数单调性,已经积累了研究函数的基本方法与初步经验。

  从学生的思维发展看,高一学生思维能力正在由形象经验型向抽象理论型转变,能够用假设、推理来思考和解决问题、

  3、教学目标

  基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:

  【知识与技能】

  1)能确定一些简单函数的奇偶性。

  2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。

  【过程与方法】

  经历奇偶性概念的构成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。

  【情感、态度与价值观】

  经过自主探索,体会数形结合的思想,感受数学的对称美。

  从课堂反应看,基本上到达了预期效果。

  4、教学重点和难点

  重点:函数奇偶性的概念和几何意义。

  几年的教学实践证明,虽然函数奇偶性这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。他们往往流于表面形式,只根据奇偶性的定义检验成立即可,而忽视了研究函数定义域的问题。所以,在介绍奇、偶函数的定义时,必须要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。所以,我把函数的奇偶性概念设计为本节课的重点。在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。

  难点:奇偶性概念的数学化提炼过程。

  由于,学生看待问题还是静止的、片面的,抽象概括能力比较薄弱,这对建构奇偶性的概念造成了必须的'困难。所以我把奇偶性概念的数学化提炼过程设计为本节课的难点。

  二、教法与学法分析

  1、教法

  根据本节教材资料和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。从课堂反应看,基本上到达了预期效果。

  2、学法

  让学生在观察一归纳一检验一应用的学习过程中,自主参与知识的发生、发展、构成的过程,从而使学生掌握知识。

  三、教学过程

  具体的教学过程是师生互动交流的过程,共分六个环节:设疑导入、观图激趣;指导观察、构成概念;学生探索、领会定义;知识应用,巩固提高;总结反馈;分层作业,学以致用。下头我对这六个环节进行说明。

  (一)设疑导入、观图激趣

  由于本节资料相对独立,专题性较强,所以我采用了开门见山导入方式,直接点明要学的资料,使学生的思维迅速定向,到达开始就明确目标突出重点的效果。

  用多媒体展示一组图片,使学生感受到生活中的对称美。再让学生观察几个特殊函数图象。经过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。

  (二)指导观察、构成概念

  在这一环节中共设计了2个探究活动。

  探究1、2数学中对称的形式也很多,这节课我们就以函数和=︱x︱以及和为例展开探究。这个探究主要是经过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y轴(原点)对称。之后学生填表,从数值角度研究图象的这种特征,体此刻自变量与函数值之间有何规律引导学生先把它们具体化,再用数学符号表示。借助课件演示(令比较得出等式,再令,得到)让学生发现两个函数的对称性反应到函数值上具有的特性,然后经过解析式给出严格证明,进一步说明这个特性对定义域内任意一个都成立。最终给出偶函数(奇函数)定义(板书)。

  在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。

  (三)学生探索、领会定义

  探究3下列函数图象具有奇偶性吗?

  设计意图:深化对奇偶性概念的理解。强调:函数具有奇偶性的前提条件是--定义域关于原点对称。(突破了本节课的难点)

  (四)知识应用,巩固提高

  在这一环节我设计了4道题

  例1确定下列函数的奇偶性

  选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下头完成。

  例1设计意图是归纳出确定奇偶性的步骤:

  (1)先求定义域,看是否关于原点对称;

  (2)再确定f(-x)=-f(x)还是f(-x)=f(x)。

  例2确定下列函数的奇偶性:

  例3确定下列函数的奇偶性:

  例2、3设计意图是探究一个函数奇偶性的可能情景有几种类型?

  例4

  (1)确定函数的奇偶性。

  (2)如图给出函数图象的一部分,你能根据函数的奇偶性画出它在y轴左边的图象吗?

  例4设计意图加强函数奇偶性的几何意义的应用。

  在这个过程中,我重点关注了学生的推理过程的表述。经过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,到达当堂消化吸收的效果。

  (五)总结反馈

  在以上课堂实录中充分展示了教法、学法中的互动模式,问题贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。

  在本节课的最终对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。知识在于积累,而学习数学更在于知识的应用经验的积累。所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。

  (六)分层作业,学以致用

  必做题:课本第36页练习第1-2题。

  选做题:课本第39页习题1、3A组第6题。

  思考题:课本第39页习题1、3B组第3题。

  设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步到达不一样的人在数学上得到不一样的发展。

  高中数学说课稿 7

  一、本节资料的地位与重要性

  "分类计数原理与分步计数原理"是《高中数学》一节独特资料。这一节课与排列、组合的基本概念有着紧密的联系,经过对这一节课的学习,既能够让学生理解、理解分类计数原理与分步计数原理,还为日后排列、组合和二项式定理的教学做好准备,起到奠基的重要作用。

  二、关于教学目标的确定

  根据两个基本原理的地位和作用,我认为本节课的教学目标是:

  (1)使学生正确理解两个基本原理的概念;

  (2)使学生能够正确运用两个基本原理分析、解决一些简单问题;

  (3)提高分析、解决问题的能力;

  (4)使学生树立"由个别到一般,由一般到个别"的认识事物的辩证唯物主义哲学思想观点。

  三、关于教学重点、难点的选择和处理

  中学数学课程中引进的关于排列、组合的计算公式都是以两个计数原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以正确理解两个基本原理并能解决实际问题是学习本章的重点资料。

  正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件。而原理中提到的分步和分类,学生不是一下子就能理解深刻的,应对复杂的事物和现象学生对分类和分步的选择容易产生错误的认识,所以分类计数原理和分步计数原理的准确应用是本节课的教学难点。必需使学生认清两个基本原理的实质就是完成一件事需要分类还是分步,才能使学生理解概念并对如何运用这两个基本原理有正确清楚的认识。教学中两个基本问题的引用及引伸,就是为突破难点做准备。

  四、关于教学方法和教学手段的选用

  根据本节课的资料及学生的实际水平,我采取启发引导式教学方法并充分发挥电脑多媒体的辅助教学作用。

  启发引导式作为一种启发式教学方法,体现了认知心理学的基本理论。贴合教学论中的自觉性和积极性、巩固性、可理解性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则,教学过程中,教师采用点拨的方法,启发学生经过主动思考、动手操作来到达对知识的"发现"和理解,进而完成知识的内化,使书本的知识成为自我的知识。

  电脑多媒体以声音、动画、影像等多种形式强化对学生感观的刺激,这一点是粉笔和黑板所不能比拟的,采取这种形式,能够极大提高学生的学习兴趣,加大一堂课的信息容量,使教学目标更完美地体现。另外,电脑软件具有良好的交互性,能够将教师的.思路和策略以软件的形式来体现,更好地为教学服务。

  五、关于学法的指导

  "授人以鱼,不如授人以渔",在教学过程中,不但要传授学生课本知识,还要培养学生主动观察、主动思考、自我发现的学习能力,增强学生的综合素质,从而到达教学的目标。教学中,教师创设疑问,学生想办法解决疑问,经过教师的启发点拨,类比推理,在积极的双边活动中,学生找到了解决疑难的方法。整个过程贯穿"设疑"——"思索"——"发现"——"解惑"四个环节,学生随时对所学知识产生有意注意,思想上经历了从肯定到否定、又从否定到肯定的辨证思维过程,贴合学生认知水平,培养了学习能力。

  六、关于教学程序的设计

  (一)课题导入

  这是本章的第一节课,是起始课,讲起始课时,把这一学科的资料作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下头的学习打下思想基础。所以,首先阅读引言,明确任务,激发兴趣。由学生感兴趣的乒乓球比赛提出问题,引出学习本节的必要性,明确研究计数方法是本章资料的独特性,从应用的广泛看学习本章资料的重要性。同时板书课题(分类计数原理与分步计数原理)

  这样做,能使学生明白本节资料的地位和作用,激发其学习新知识的欲望,为顺利完成教学任务做好思维上的准备。

  (二)新课讲授

  经过幻灯片给出问题,配图分析,讲清坐火车与坐汽车两类方法均可,每类中任一种办法都能够独立地把从甲地到乙地这件事办好。

  紧跟着给出:

  引申1:若甲地到乙地一天中还有4班轮船可乘,那么一天中,坐这些交通工具从甲地到一点共有多少种不一样的走法?

  引伸2:若完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,每一类中的每一种方法均可完成这件事,那么完成这件事共有多少种不一样方法?

  这个问题的两个引申由渐入深、循序渐进为学生理解分类计数原理做好了准备。

  板书分类计数原理资料:

  完成一件事,有类办法。在第1类办法中有种不一样方法,在第2类办法中有种不一样的方法,……,在第类办法中有种不一样方法,那么完成这件事共有种不一样的方法。(也称加法原理)

  此时,趁学生对于原理有了一个较清晰的认识,引导学生分析分类计数原理资料,启发总结得下头三点注意:(出示幻灯片)

  (1)各分类之间相互独立,都能完成这件事;

  (2)根据问题的特点在确定的分类标准下进行分类;

  (3)完成这件事的任何一种方法必属于某一类,并且分别属于不一样两类的两种方法都是不一样的方法。

  这样做加深学生对分类计数原理的正确理解,突出了重点,突破了难点。

  接下来给出问题2:(出示幻灯片)

  由A村去B村的道路有3条,由B村去C村的道路有2条(见图9-1),从A村经B村去C村,共有多少种不一样的走法?

  提出问题:问题1与问题2同是研究从甲地到乙地的不一样走法,请找出这两个问题的不之处?学生会发现问题1中采用乘火车或乘汽车都能够从甲地到乙地,而问题2中必須经过先乘火车后乘汽车两个步骤才能完成从甲地到乙地这件事。

  问题2的讲授采用给出问题,配图分析,组织讨论,强调分步。用多媒体配不一样的颜色闪现出六种不一样的走法,让学生列式求出不一样走法数,并列举所有走法。

  归纳得出:分步计数原理(板书原理资料)

  分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不一样的方法,做第二步有m2种不一样的方法,……,做第n步有mn种不一样的方法。那么,完成这件事共有

  N=m1xm2x…xmn

  种不一样的方法。

  同样趁学生对定理有必须的认识,引导学生分析分步计数原理资料,启发总结得下头三点注意:(出示幻灯片)

  (1)各步骤相互依存,仅有各个步骤完成了,这件事才算完成;

  (2)根据问题的特点在确定的分步标准下分步;

  (3)分步时要注意满足完成一件事必须并且只需连续完成这N个步骤这件事才算完成。

  (三)应用举例

  教材例1:(书架取书问题)引导学生分析解答,注意区分是分类还是分步。

  例2:由数字0,1,2,3,4能够组成多少个三位整数(各位上的数字允许重复)?本题设置了4个问题:

  (1)每一个三位数是由什么构成的?(三个整数字)

  (2)023是一个三位数吗?(百位上不能是0)

  (3)组成一个三位数需要怎样做?(分成三个步骤来完成:第一步确定百位上的数字;第二步确定十位上的数字;第三步确定个位上的数字)

  (4)怎样表述?

  教师巡视指导、并归纳

  解:要组成一个三位数,需要分成三个步骤:第一步确定百位上的数字,从1~4这4个数字中任选一个数字,有4种选法;第二步确定十位上的数字,由于数字允许重复,共有5种选法;第三步确定个位上的数字,仍有5种选法。根据分步计数原理,得到能够组成的三位整数的个数是N=4x5x5=100。

  答:能够组成100个三位整数。

  (教师的连续发问、启发、引导,帮忙学生找到正确的解题思路和计算方法,使学生的分析问题能力有所提高。

  教师在第二个例题中给出板书示范,能帮忙学生进一步加深对两个基本原理实质的理解,周密的研究,准确的表达、规范的书写,对于学生周密思考、准确表达、规范书写良好习惯的构成有着积极的促进作用,也能够为学生后面应用两个基本原理解排列、组合综合题打下基础)

  (四)归纳小结

  师:什么时候用分类计数原理、什么时候用分步计数原理呢?

  生:分类时用分类计数原理,分步时用分步计数原理。

  师:应用两个基本原理时需要注意什么呢?

  生:分类时要求各类办法彼此之间相互排斥;分步时要求各步是相互独立的。

  (五)课堂练习

  P222:练习1~4,学生板演第4题

  (对于题4,教师有必要对三个多项式乘积展开后各项的构成给以提示)

  (六)布置作业

  P222:练习5,6,7。

  补充题:

  1.在所有的两位数中,个位数字小于十位数字的共有多少个?

  (提示:按十位上数字的大小能够分为9类,共有9+8+7+…+2+1=45个个位数字小于十位数字的两位数)

  2.某学生填报高考志愿,有m个不一样的志愿可供选择,若只能按第一、二、三志愿依次填写3个不一样的志愿,求该生填写志愿的方式的种数。

  (提示:需要按三个志愿分成三步。共有m(m-1)(m-2)种填写方式)

  3.在所有的三位数中,有且仅有两个数字相同的三位数共有多少个?

  (提示:能够用下头方法来求解:(1)△△□,(2)△□△,(3)□△□,(1),(2),(3)类中每类都是9x9种,共有9x9+9x9+9x9=3x9x9=243个仅有两个数字相同的三位数)

  4.某小组有10人,每人至少会英语和日语中的一门,其中8人会英语,5人会日语,(1)从中任选一个会外语的人,有多少种选法?(2)从中选出会英语与会日语的各1人,有多少种不一样的选法?

  (提示:由于8+5=13》10,所以10人中必有3人既会英语又会日语。(1)N=5+2+3;(2)N=5x2+5x3+2x3)

  只要大家用心学习,认真复习,就有可能在高中的战场上考取自我梦想的成绩。

  高中数学说课稿 8

  一、教材分析:

  《向量的加法》是《必修》4第二章第二单元中"平面向量的线性运算"的第一节课。本节资料有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在"平面向量"及"空间向量"中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,明白向量能够自由移动,这是学习本节资料的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可经过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、经过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、经过本节的.学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点:

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,可是三角形法则适用范围更加广泛,且简便易行,所以是详讲资料,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法:

  本节采用以下教学方法:

  1、类比:由数的加法运算类比向量的加法运算。

  2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;经过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。

  3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。

  4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从比较中看出两者的不一样,效果较好。

  3、归纳思想:主要体此刻以下三个环节:

  ①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都能够选用。

  ②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。

  ③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情景,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的引入。

  学生在物理学中虽然接触过位移的合成,可是并没有构成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,可是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要经过讲解例1,使学生认识到能够经过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易理解,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的"起点相同"这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还能够利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都能够用。

  设计意图:由平行四边形法则的图形引入三角形法则,能够很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,并且衔接自然,能够使学生比较地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法。

  方向相同的两个向量相加,对学生来说较易完成,"将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。"引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不明白怎样做。可是学生学过有理数加法中的异号两数相加:"异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。"类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由教师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则经过以上几个环节的讨论,能够作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:经过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不一样位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,能够化解难点。

  (4)向量加法的运算律。

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是经过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样能够运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最终一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结:

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结资料,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律。

  高中数学说课稿 9

  一、说教材

  1、教材的地位、作用及编写意图。

  《对数函数》出此刻职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等资料,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考资料。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键。

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情景,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地理解并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生经过分析、探索、得出对数函数的定义。

  (3)自主性学习法:经过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情景,找出未掌握的资料及其差距。

  这样可发挥学生的主观能动性,有利于提高学生的各种能力。

  四、说教学程序

  1、复习导入:

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节资料有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望明白问题的.答案。

  2、认定目标(出示教学目标)。

  3、导学达标:

  按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

  (1)对数函数的概念:

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a》0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a》0且a≠1。从而引出对数函数的概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于理解。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,经过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象:

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都能够根据函数的解析式,列表、描点画图。再研究一下,我们还能够用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x>0,所以可取x=……1,2,4,8……,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

  方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就能够得到y=logax的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,能够加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样能够充分调动学生自主学习的积极性。

  (3)对数函数的性质:

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮忙,学生易于理解易于掌握,并且利用表格,能够突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:经过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)。

  这一训练是为了培养学生利用所学知识解决实际问题的能力,经过这个环节学生能够加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

  5、反馈练习(见课件)。

  习题是对学生所学知识的反馈过程,教师能够了解学生对知识掌握的情景。

  6、归纳总结(见课件)。

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,所以,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业:

  (1)完成P782、3题。

  (2)当底数a>1与0

  五、说板书

  板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

  高中数学说课稿 10

  一、说教材

  (1)说教材的内容和地位

  本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

  (2)说教学目标

  根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

  1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

  2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

  3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

  (3)说教学重点和难点

  依据课程标准和学生实际,我确定本课的教学重点为:

  教学重点:集合的基本概念及元素特征。

  教学难点:掌握集合元素的三个特征,体会元素与集合的.属于关系。

  二、说教法和学法

  接下来则是说教法、学法

  教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

  总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

  三、说教学过程

  接着我来说一下最重要的部分,本节课的教学过程:

  这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。多层次、多角度地加深对概念的理解。提高学生学习的兴趣,以达到良好的教学效果。

  第一环节:创设问题情境,引入目标

  课堂开始我将提出两个问题:

  问题1:班级有20名男生,16名女生,问班级一共多少人?

  问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

  这里我会让学生以小组讨论的形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

  待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

  安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

  很自然地进入到第二环节:自主探究

  让学生阅读教材,并思考下列问题:

  (1)有那些概念?

  (2)有那些符号?

  (3)集合中元素的特性是什么?

  安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

  让学生自主探究之后将进入第三环节:讨论辨析

  小组合作探究(1)

  让学生观察下列实例

  (1)1~20以内的所有质数;

  (2)所有的正方形;

  (3)到直线的距离等于定长的所有的点;

  (4)方程的所有实数根;

  通过以上实例,辨析概念:

  (1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

  (2)表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

  小组合作探究(2)——集合元素的特征

  问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

  问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

  集合中的元素必须是确定的

  问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

  集合中的元素是不重复出现的

  问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的

  我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

  小组合作探究(3)——元素与集合的关系

  问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

  问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

  a属于集合A,记作a∈A

  问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

  a不属于集合A,记作aA

  小组合作探究(4)——常用数集及其表示方法

  问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

  自然数集(非负整数集):记作N

  正整数集:

  整数集:记作Z

  有理数集:记作Q实数集:记作R

  设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

  第四环节:理论迁移变式训练

  1.下列指定的对象,能构成一个集合的是

  ①很小的数

  ②不超过30的非负实数

  ③直角坐标平面内横坐标与纵坐标相等的点

  ④π的近似值

  ⑤所有无理数

  A、②③④⑤B、①②③⑤C、②③⑤D、②③④

  第五环节:课堂小结,自我评价

  1.这节课学习的主要内容是什么?

  2.这节课主要解释了什么数学思想?

  设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

  第六环节:作业布置,反馈矫正

  1.必做题课本习题1.1—1、2、3。

  2.选做题已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a的值。

  设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

  四、板书设计

  好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

  集合

  1.集合的概念

  2.集合元素的特征

  (学生板演)

  3.常见集合的表示

  4.范例研究

  高中数学说课稿 11

  一、说教材

  1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的`,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。

  好学教育:

  因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  高中数学说课稿 12

  新课标指出,高中数学课程的教学要能提高学生的“四基、四能”,根据这一课程目标,本节课我将从教材分析、教学目标、教学过程等几个方面来展开我的说课。

  一、说教材

  本节课选自人教A版高中数学必修3第三章。本节课的内容是在古典概型基础上的进一步发展,是等可能事件的概念从有限向无限的延伸。通过本节课的学习,学生能进一步体会实验结果的随机性与规律性,并体会到对事物的看法不应该持绝对化的观点。

  二、说学情

  高中生智力发育已趋于成熟,对于未知事物有着很强的探究欲望,且此前古典概型的'学习为本节课打下了良好的基础。但基能力件有无数多个的发现以及此种情况下概率该如何计算,学生并不容易想到。因此我会从具体的生活、实践问题入手,组织学生开展活动,在观察、思考中抽象、概括本节课的要点。

  三、说教学目标

  结合以上分析,我制定本节课教学目标如下:

  (一)知识与技能

  初步体会几何概型的意义,掌握几何概型的概率计算公式,并能进行简单应用。

  (二)过程与方法

  在通过几何概型特点概括出几何概型概率计算公式的过程中,进一步发展合情推理能力,学会运用数形结合的思想解决概率计算问题。

  (三)情感、态度与价值观

  通过贴近生活的素材,激发学习数学的兴趣,体会用科学的态度、辩证的思想去观察、分析、研究客观世界。

  四、说教学重难点

  同时,本节课教学重点为:几何概型的意义及概率计算公式。教学难点为:几何概型概率计算公式的推导。

  五、说教法和学法

  教学的一切活动都必须以强调学生的主动性、积极性为出发点,根据这一教学理念,本节课我将采用讲授法、自主探究法、练习法等教学方法。

  六、说教学过程

  下面说说我的教学过程。

  (一)引入新课

  首先我会带领学生复习确定随机事件发生的概率的两种方法,一是通过频率估算概率,二是用古典概型的概率公式来计算事件发生的概率。但古典概型是基于试验的所有结果是有限个,当试验的所有可能结果有无穷多个时,无法利用之前的方法进行计算,进而进入本节课的学习。

  利用复习导入,一来可以巩固之前所学,二来将等可能事件从有限拓展到无限,引发学生的认知冲突,体现出学习本节课的必要性。

  (二)讲解新知

  接下来是新知讲解。为了让学生初步感知几何概型的基本特点,我会举例:

  (1)一个人到单位的时间可能是8:00~9:00之间任一时刻。

  (2)往一方格中投一个石子。并请学生说说此人到达单位的时间点以及石子落在方格的哪个位置,会不会在某一时间点到达或落在某一位置的概率比较大。学生结合生活经验能够发现,此时基能力件有无数多个,且基能力件发生是等可能的。

  仅仅知道特点还是不够的,还要知道相应概率的求法。为了让学生有更直观的感知,我会出示具体问题:如图,甲、乙两人玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜。请学生思考在两种情况下甲获胜的概率分别是多少。

  高中数学说课稿 13

  一、教材分析:

  集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

  二、目标分析:

  教学重点、难点

  重点:集合的含义与表示方法。

  难点:表示法的恰当选择。

  教学目标

  1.知识与技能

  (1)通过实例,了解集合的含义,体会元素与集合的属于关系;

  (2)知道常用数集及其专用记号;

  (3)了解集合中元素的确定性。互异性。无序性;

  (4)会用集合语言表示有关数学对象;

  2.过程与方法

  (1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义。

  (2)让学生归纳整理本节所学知识。

  3.情感、态度与价值观

  使学生感受到学习集合的必要性,增强学习的积极性。

  三、教法分析:

  1.教学方法:学生通过阅读教材,自主学习。思考。交流。讨论和概括,从而更好地完成本节课的教学目标。

  2.教学手段:在教学中使用投影仪来辅助教学。

  四、过程分析:

  (一)创设情景,揭示课题

  1.教师首先提出问题:

  (1)介绍自己的家庭、原来就读的学校、现在的班级。

  (2)问题:像"家庭"、"学校"、"班级"等,有什么共同特征?

  引导学生互相交流。与此同时,教师对学生的活动给予评价。

  2.活动:

  (1)列举生活中的集合的`例子;

  (2)分析、概括各实例的共同特征

  由此引出这节要学的内容。

  设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

  (二)研探新知,建构概念

  1.教师利用多媒体设备向学生投影出下面7个实例:

  (1)1-20以内的所有质数;

  (2)我国古代的四大发明;

  (3)所有的安理会常任理事国;

  (4)所有的正方形;

  (5)海南省在2004年9月之前建成的所有立交桥;

  (6)到一个角的两边距离相等的所有的点;

  (7)国兴中学2004年9月入学的高一学生的全体。

  2.教师组织学生分组讨论:这7个实例的共同特征是什么?

  3.每个小组选出--位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义。

  一般地,指定的某些对象的全体称为集合(简称为集)。集合中的每个对象叫作这个集合的元素。

  4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示。

  设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

  (三)质疑答辩,发展思维

  1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难。使学生明确集合元素的三大特性,即:确定性。互异性和无序性。只要构成两个集合的元素是一样的,我们就称这两个集合相等。

  2.教师组织引导学生思考以下问题:

  判断以下元素的全体是否组成集合,并说明理由:

  (1)大于3小于11的偶数;

  (2)我国的小河流。

  让学生充分发表自己的建解。

  3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由。教师对学生的学习活动给予及时的评价。

  4.教师提出问题,让学生思考

  (1)如果用A表示高-(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于。

  如果是集合A的元素,就说属于集合A,记作。

  如果不是集合A的元素,就说不属于集合A,记作。

  (2)如果用A表示"所有的安理会常任理事国"组成的集合,则中国。日本与集合A的关系分别是什么?请用数学符号分别表示。

  (3)让学生完成教材第6页练习第1题。

  5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号。并让学生完成习题1.1A组第1题。

  6.教师引导学生阅读教材中的相关内容,并思考。讨论下列问题:

  (1)要表示一个集合共有几种方式?

  (2)试比较自然语言。列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

  (3)如何根据问题选择适当的集合表示法?

  使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

  设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

  (四)巩固深化,反馈矫正

  教师投影学习:

  (1)用自然语言描述集合{1,3,5,7,9};

  (2)用例举法表示集合

  (3)试选择适当的方法表示下列集合:教材第6页练习第2题。

  设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

  (五)归纳小结,布置作业

  小结:在师生互动中,让学生了解或体会下例问题:

  1.本节课我们学习了哪些知识内容?

  2.你认为学习集合有什么意义?

  3.选择集合的表示法时应注意些什么?

  设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

  作业:

  1.课后书面作业:第13页习题1.1A组第4题。

  2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材。

  高中数学说课稿 14

  大家好!我叫周婷婷,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教A版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用。

  现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。

  2.教学的重点和难点。

  重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。

  二、教学目标分析

  1.知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。

  2.能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。

  3.情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。

  三、教学方法分析

  采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。

  四、学情分析

  算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。

  五、教学过程分析

  1.创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法"。

  「设计意图」是为了充分挖掘章头图的教学价值,体现

  1)算法概念的由来;

  2)我们将要学习的算法与计算机有关;

  3)展示中国古代数学的成就;

  4)激发学生学习算法的兴趣。从而顺其自然的过渡到本节课要讨论的话题。(约4分钟)

  2.引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的`认识,为建立算法的概念做好铺垫。

  之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)

  3.例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。

  这两道例题均选自课本的例1和例2。

  例1是让我们设定一个程序以判断一个数是否为质数。质数是我们之前已经学习的内容,为了能更顺利地完成解题过程,这里有必要引导学生们回顾一下质数应满足的条件,然后再根据这个来探索解题步骤。通过例1让学生认识到求解结构中存在"重复"。为导出一般问题的算法创造条件,也为学习算法的自然语言表示提供前提。告诉学生们本算法就是用自然语言的形式描述的。并且设计算法一定要做到以下要求:

  (1)写出的算法必须能解决一类问题,并且能够重复使用。

  (2)要使算法尽量简单、步骤尽量少。

  (3)要保证算法正确,且计算机能够执行。

  在例1的基础上我们继续研究例2,例2是要求我们设计一个利用二分法来求解方程的近似根的程序。我们首先要对算法作分析,回顾用二分法求解方程近似根的过程,然后设计出解题步骤。二分法是算法中的经典问题,具有明显的顺序和可操作的特点。因此通过例2可以让学生进一步了解算法的逻辑结构,领会算法的思想,体会算法的的特征。同时也可以巩固用自然语言描述算法,提高用自然语言描述算法的表达水平。另外,借助例题加强学生对算法概念的理解,体会算法具有程序性、有限性、构造性、精确性、指向性的特点,算法以问题为载体,泛泛而谈没有意义。(约20分钟)

  4.课堂小结:

  (1)算法的概念和算法的基本特征。

  (2)算法的描述方法,算法可以用自然语言描述。

  (3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)

  5.布置作业:课本练习1、2题

  课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

  高中数学说课稿 15

  我说课的内容是人教版A版必修2第三章第一节直线的倾斜角与斜率第一课时。

  (一)教材分析

  本节课选自必修2第三章(解析几何的第一章)第一节直线的倾斜角与斜率第一课时,直线的倾斜角和斜率解析几何的重要概念;是刻画直线倾斜程度的几何要素与代数表示;学生在原有的对直线的有关性质及平面向量的相关知识理解的基础上,重新以解析法的方式来研究直线相关性质,而本节课直线的倾斜角与斜率,是直线的重要的几何性质,是研究直线的方程形式,直线的位置关系等的思维的起点;另外,本节课也初步向学生渗透解析几何的基本思想和基本方法。因此,本课有着开启全章、渗透方法,承前启后的作用。

  (二)学情分析

  本节课的教学对象是高二学生,这个年龄段的学生天性活泼,求知欲强,并且学习主动,在知识储备上知道两点确定一条直线,知道点与坐标的关系,实现了最简单的形与数的转化;了解刻画倾斜程度可用角和正切值;具备了一定的数形结合的能力和分类讨论的思想。但根据学生的认知规律,还没有形成自觉地把数学问题抽象化的能力。所以在教学设计时需从学生的最近发展区进行探究学习,尽量让不同层次的学生都经历概念的形成、巩固和应用过程。

  (三)教学目标

  1.理解直线的倾斜角和斜率的概念,理解直线的倾斜角的唯一性和斜率的存在性;

  2.掌握过两点的直线斜率的计算公式;

  3.通过经历从具体实例抽象出数学概念的过程,培养学生观察、分析和概括能力;

  4.通过斜率概念的建立以及斜率公式的构建,帮助学生进一步体会数形结合的思想,培养学生严谨求简的数学精神。

  重点:斜率的概念,用代数方法刻画直线斜率的过程,过两点的直线斜率的计算公式。

  难点:直线的倾斜角与斜率的概念的形成,斜率公式的构建。

  (四)教法和学法

  课堂教学应有利于学生的数学素质的形成与发展,即在课堂教学过程中,创设问题的情景,激发学生主动的发现问题解决问题,充分调动学生学习的主动性、积极性;有效的渗透数学思想方法,发展学生个性思维品质,这是本节课的教学原则。根据这样的教学原则,考虑到学生首次接触解析几何的内容及研究方法,所以我采用设置问题串的形式,启发引导学生类比、联想,产生知识迁移;通过几何画板演示实验、探索交流相结合的`教学方法激发学生观察、实验,体验知识的形成过程;由此循序渐进,使学生很自然达到本节课的学习目标。

  (五)教学过程

  环节1.指明研究方向(3min)

  平面上的点可以用坐标表示,也就是几何问题代数化。那么我们生活中见到的很多优美的曲线能否用数来刻画呢?

  简介17世纪法国数学家笛卡尔和费马的数学史。

  【设计意图】使学生对解析几何的历史以及它的研究方向有一个大致的了解。

  由此引入课题(直线的倾斜角与斜率)

  环节2.活动探究(13min)

  【设计意图】让学生经历探究过程后掌握倾斜角和斜率两个概念,体会概念的产生是自然的,并不是硬性规定的。

  (探究活动一:倾斜角概念的得出)

  问题1.如图,对于平面直角坐标系内过两点有且只有一条直线,过一点P的位置能确定吗?如图,这些不同直线的区别在哪里?

  【设计意图】引导学生发现过定点的不同直线,其倾斜程度不同。从而发现过直线上一点和直线的倾斜程度也能确定一条直线。

  问题2.在直角坐标系中,任何一条直线与x轴都有一个相对倾斜程度,可以用一个什么样的几何量来反映一条直线与x轴的相对倾斜程度呢?

  【设计意图】引导学生探索描述直线的倾斜程度的几何要素,由此引出倾斜角的概念:直线L与x轴相交,我们取x轴为基准,x轴正向与直线L向上的方向之间所成的角α叫做直线L的倾斜角。

  问题3.依据倾斜角的定义,小组合作探究倾斜角的范围是多少?

  (探究活动二:斜率概念的得出)

  问题4.日常生活中,还有没有表示倾斜程度的量?

  问题5.如果使用“倾斜角”的概念,坡度实际就是倾斜角的正切值,由此你认为还可以用怎样的量来刻画直线的倾斜程度?

  由学生已知坡度中“前进量”不能为0,补充倾斜角是90゜的直线没有斜率

  【设计意图】迁移、类比得出我们把一条直线的倾斜角的正切值叫做这条直线的斜率,让学生感受数学概念来源于生活,并体验从直观到抽象的过程培养学生观察、归纳、联想的能力。

  环节3.过程体验(斜率公式的发现)(10min)

  问题6.两点能确定一条直线,那么两点能确定一条直线的斜率么?

  先由每名学生各自举出两个特殊的点。例如A(1,2)、B(3,4),独立研究如何由这两点求斜率,再通过学生相互讨论,师生共同交流提炼出解决问题的一般方法,进而把这种方法迁移到一般化的问题上来。得出斜率公式k=y2y1。

  为了深化对公式的理解,完善对公式的认识,我设计了如下三个思考问题:

  思考1:如果直线AB//x轴,上述结论还适用吗?

  思考2:如果直线AB//y轴,上述结论还适用吗?

  思考3:交换A、B位置,对比值有影响吗?

  在学生充分思考、讨论的基础上,借助信息技术工具,一方面计算的值,另一方面计算倾斜角的正切值。让学生亲自操作几何画板,改变直线的倾斜程度,动态演示可以把教科书第84页图3.1-4所示的各种情况都展示出来,形象直观,可使学生更好的把握斜率公式。

  环节4.操作建构(10min)

  第一部分(教材例一):如图,已知A(3,2),B(-4,1),C(0,-1),求直线AB,BC,CA的斜率,并判断倾斜角是锐角还是钝角。

  学生独立完成后,请三位学生作答,师生共同评析,明确斜率公式的运用,强调可以从形的角度直接判断直线的倾斜角是锐角还是钝角,也可由直线的斜率的正负判断。

  第二部分(教材例二):在平面直角坐标系中,画出经过原点且斜率分别为1,-1,2及-3的直线。

  本题要求学生画图,目的是加强数形结合,我将请两位同学上台板演,其余同学在练习本上完成,因为直线经过原点,所以只要在找出另外一点就可确定,再推导斜率公式时,学生已经知道,斜率k的值与直线上P1,P2的位置无关,因此,由已知直线的斜率画直线时,可以再找出一个特殊点即可。

  环节5.小结作业(4min)

  1、本节课你学到了哪些新的概念?他们之间有什么样的关系?

  2、怎样求出已知两点的直线的斜率?

  3、本节课你还有哪些问题?

  两点直线倾斜角斜率

  一点一方向

  作业:必做题:P.86第1,2,题

  选做题:P.90探究与发现:魔法师的地毯

  以上五个环节环环相扣,层层深入,以明线和暗线双线渗透。并注意调动学生自主探究与合作交流。注意教师适时的点拨引导,学生主体地位和教师的主导作用得以体现。能够较好的实现教学目标,也使课标理念能够很好的得到落实。

  (六)板书设计

  3.1.1直线的倾斜角与斜率

  1定义:倾斜角学生板演

  斜率

  2.斜率k与倾斜角之间的关系

  3.斜率公式

  高中数学说课稿 16

  我叫xxx,来自xx。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1.教材所处的地位和作用

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

  2.教学的重点和难点

  重点:理解古典概型及其概率计算公式。

  难点:古典概型的判断及把一些实际问题转化成古典概型。

  二、教学目标分析

  1.知识与技能目标

  (1)通过试验理解基能力件的概念和特点。

  (2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

  2.过程与方法:

  经历公式的推导过程,体验由特殊到一般的数学思想方法。

  3.情感态度与价值观:

  (1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

  (2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

  三、教法与学法分析

  1.教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

  2.学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

  ㈠创设情景、引入新课

  在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

  试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

  试验二:抛掷一枚质地均匀的`骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

  在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

  1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

  不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

  2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

  「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

  ㈡思考交流、形成概念

  学生观察对比得出两个模拟试验的相同点和不同点,教师给出基能力件的概念,并对相关特点加以说明,加深对新概念的理解。

  [基能力件有如下的两个特点:

  (1)任何两个基能力件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基能力件的和。]

  「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

  例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基能力件?

  先让学生尝试着列出所有的基能力件,教师再讲解用树状图列举问题的优点。

  「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基能力件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基能力件总数这一难点。

  观察对比,发现两个模拟试验和例1的共同特点:

  让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

  [经概括总结后得到:

  (1)试验中所有可能出现的基能力件只有有限个;(有限性)

  (2)每个基能力件出现的可能性相等。(等可能性)

  我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

  「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

  ㈢观察分析、推导方程

  问题思考:在古典概型下,基能力件出现的概率是多少?随机事件出现的概率如何计算?

  教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

  「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

  提问:

  (1)在例1的实验中,出现字母"d"的概率是多少?

  (2)在使用古典概型的概率公式时,应该注意什么?

  「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  ㈣例题分析、推广应用

  例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  学生先思考再回答,教师对学生没有注意到的关键点加以说明。

  「设计意图」让学生明确决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基能力件的个数和试验中基能力件的总数。巩固学生对已学知识的掌握。

  例3同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  先给出问题,再让学生完成,然后引导学生分析问题,发现解答中存在的问题。引导学生用列表来列举试验中的基能力件的总数。

  「设计意图」利用列表数形结合和分类讨论,既能形象直观地列出基能力件的总数,又能做到列举的不重不漏。深化巩固对古典概型及其概率计算公式的理解。培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣,形成学习数学知识的积极态度。

  ㈤探究思想、巩固深化

  问题思考:为什么要把两个骰子标上记号?如果不标记号会出现什么情况?你能解释其中的原因吗?

  要求学生观察对比两种结果,找出问题产生的原因。

  「设计意图」通过观察对比,发现两种结果不同的根本原因是--研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐养成自主探究能力。

  ㈥总结概括、加深理解

  1.基能力件的特点

  2.古典概型的特点

  3.古典概型的概率计算公式

  学生小结归纳,不足的地方老师补充说明。

  「设计意图」使学生对本节课的知识有一个系统全面的认识,并把学过的相关知识有机地串联起来,便于记忆和应用,也进一步升华了这节课所要表达的本质思想,让学生的认知更上一层。

  ㈦布置作业

  课本练习1、2、3

  「设计意图」进一步让学生掌握古典概型及其概率公式,并能够学以致用,加深对本节课的理解。

  高中数学说课稿 17

  一、教材分析:

  《向量的加法》是《必修》4第二章第二单元中"平面向量的线性运算"的第一节课。本节资料有向量加法的平行四边形法则、三角形法则及应用,向量加法的运算律及应用,大约需要1课时。向量的加法是向量的线性运算中最基本的一种运算,向量的加法及其几何意义为后继学习向量的减法运算及其几何意义、向量的数乘运算及其几何意义奠定了基础;其中三角形法则适用于求任意多个向量的和,在空间向量与立体几何中有很普遍的应用。所以本课在"平面向量"及"空间向量"中有很重要的地位。

  二、学情分析:

  学生在上节课中学习了向量的定义及表示,相等向量,平行向量等概念,明白向量能够自由移动,这是学习本节资料的基础。学生对数的运算了如指掌,并且在物理中学过力的合成、位移的合成等矢量的加法,所以向量的加法可经过类比数的加法、以所学的物理模型为背景引入,这样做有利于学生更好地理解向量加法的意义,准确把握两个加法法则的特点。

  三、教学目的:

  1、经过对向量加法的探究,使学生掌握向量加法的概念,结合物理学实际理解向量加法的意义。能正确领会向量加法的平行四边形法则和三角形法则的几何意义,并能运用法则作出两个已知向量的和向量。

  2、在应用活动中,理解向量加法满足交换律和结合律以及表述两个运算律的几何意义。掌握有特殊位置关系的两个向量之和,比如共线向量,共起点向量、共终点向量等。

  3、经过本节的学习,培养学生类比、迁移、分类、归纳等数学方面的能力。

  四、教学重、难点:

  重点:向量的加法法则。探究向量的加法法则并正确应用是本课的重点。两个加法法则各有特点,联系紧密,你中有我,我中有你,实质相同,可是三角形法则适用范围更加广泛,且简便易行,所以是详讲资料,平行四边形法则在本课中所占份量略少于三角形法则。

  难点:对三角形法则的理解;方向相反的两个向量的加法。主要是让学生认识到三角形法则的实质是:将已知向量首尾相接,而不是表示向量的有向线段之间必须构成三角形。

  五、教学方法:

  本节采用以下教学方法:

  1、类比:由数的加法运算类比向量的加法运算。

  2、探究:由力的合成引入平行四边形法则,在法则的运用中观察图形得出三角形法则,探求共线向量的加法,发现三角形法则适用于任意向量相加;经过图形,观察得出向量加法满足交换律、结合律等,这些都体现探究式教学法的运用。

  3、讲解与练习:对两个法则特点的分析,例题都采取了引导与讲解的方法,学生课堂完成教材中的练习。

  4、多媒体技术的运用,能直观地表现向量的平移,相等向量的意义,更能说清两个法则的几何意义及运算律。

  六、数学思想的体现:

  1、分类的思想:总的来说本课中向量的加法分为不共线向量及共线向量两种形式,共线向量又分为方向相同与方向相反两种情形,然后专门对零向量与任意向量相加作了规定,这样对任意向量的加法都做了讨论,线索清楚。

  2、类比思想:使之与数的加法进行类比,使学生对向量的加法不致于太陌生,既有似曾相识的感觉,又能从比较中看出两者的不一样,效果较好。

  3、归纳思想:主要体此刻以下三个环节:

  ①学完平行四边形法则和三角形法则后,归纳总结,对不共线向量相加,两个法则都能够选用。

  ②由共线向量的加法总结出三角形法则适用于任意两个向量的相加,而三角形法则仅适用于不共线向量相加。

  ③对向量加法的结合律和探讨中,又使学生发现了三角形法则还适用于任意多个向量的加法。归纳思想在这三个环节中的运用,使得学生对两个加法法则,尤其是三角形法则的理解,步步深入。

  七、教学过程:

  1、回顾旧知:本节要进行向量的平移,且对向量加法分共线与不共线两种情景,所以要复习向量、相等向量、共线向量等概念,这些都是新课学习中必要的知识铺垫。

  2、引入新课:

  (1)平行四边形法则的`引入。

  学生在物理学中虽然接触过位移的合成,可是并没有构成三角形法则的概念;而对平行四边形法则学生已学过,很熟悉。所以我决定由力的合成引入向量加法的平行四边形法则。平行四边形法则的特点是起点相同,可是物理中力的合成是在有相同的作用点的条件下合成的,引入到数学中向量加法的平行四边形法则,所给出的图形也是现成的平行四边形,而学生刚学完相等向量,对相等向量的概念还没有深刻的认识,易产生误解:表示两个已知向量的有向线段的起点必须在一起才能用平行四边形法则,不在一起不能用。这时要经过讲解例1,使学生认识到能够经过平移向量,使表示两个向量的有向线段有共同的起点。这一点对理解及运用法则求两向量的和很重要。

  设计意图:本着从学生最熟悉、离学生最近的知识经验为接入点,用学生熟知的方法来解决新的问题——向量的加法,这样新中有旧,学生容易理解,也使学科间的渗透发挥了作用,加深了学生对向量加法的平行四边形法则的"起点相同"这一特点的认识,例1的讲解使学生认识到当表示向量的有向线段的起点不在一起时,须把起点移到一起,至此才能使学生完成对平行四边形法则理解真正到位。

  (2)三角形法则的引入。三角形法则没有按照教材中利用位移的合成引入,而是从前面所讲的平行四边形法则的图形中直接引入。

  所以这种把两个向量相加的方法称为三角形法则。接下来用幻灯片完整展示三角形法则,同时法则的作法叙述、作图过程对学生也起到了示例的作用。于是前面的例1还能够利用三角形法则来做。

  这时,总结出两个不共线向量求和时,平行四边形法则与三角形法则都能够用。

  设计意图:由平行四边形法则的图形引入三角形法则,能够很清楚地使学生从向何意义上认识到两个法则之间的密切联系,理解它们的实质,并且衔接自然,能够使学生比较地得出两个法则的特点与实质,并对两个法则的特点有较深刻的印象。

  (3)共线向量的加法

  方向相同的两个向量相加,对学生来说较易完成,"将它们接在一起,取它们的方向及长度之和,作为和向量的方向与长度。"引导学生分析作法,结果发现还是运用了三角形法则:首尾相接,方向由第一个向量的起点指向第二个向量的终点。

  方向相反的两个向量相加,对学生来说是个难点,首先从作图上不明白怎样做。可是学生学过有理数加法中的异号两数相加:"异号两数相加,用较大的绝对值减去较小的绝对值,符号取绝对值较大的数的符号。"类比异号两数相加,他们会用较长的模减去较短的模,方向取模较长的向量的方向。具体做法由教师引导学生尝试运用三角形法则去做,发现结论正确。

  反思过程,学生自然会想到方向相同的两个向量相加,类似于同号两数相加。这说明两个共线向量相加依然可用三角形法则经过以上几个环节的讨论,能够作个简单的小结:两个不共线向量相加,可采用平行四边形法则或三角形法则,而两个共线向量相加在本课所学方法中只能用三角形法则,说明三角形法则适用于任意两个向量相加。

  设计意图:经过对共线向量加法的探讨,拓宽了学生对三角形法则的认识,使得不一样位置的向量相加都有了依据,并且采用类比的方法,使学生对共线向量的加法,尤其是方向相反的两个向量的加法更易于理解,能够化解难点。

  (4)向量加法的运算律

  ①交换律:交换律是利用平行四边形法则的图形,又结合三角形法则得出,理解起来没什么困难,再一次强化了学生对两个法则特点及实质的认识。

  ②结合律:结合律是经过三个向量首尾相接,先加前两个再与第三个向量相加,和先加后两个向量再与第一个向量相加所得结果相同。

  接下来是对应的两个练习,运用交换律与结合律计算向量的和。

  设计意图:运算律的引入给加法运算带来方便,从后面的练习中学生能够体会到这点。由结合律还使学生发现,多个向量相加,同样能够运用三角形法则:将所加向量首尾相接,和向量的方向是由第一个向量的起点指向最终一个向量的终点。这样使学生明白,三角形法则适用于任意多个向量相加。

  3、小结

  先由学生小结,检查学生对本课重要知识的认识,也给学生一个概括本节知识的机会,然后用课件展示小结资料,使学生印象更深。

  (1)平行四边形法则:起点相同,适用于不共线向量的求和。

  (2)三角形法则首尾相接,适用于任意多个向量的求和。

  (3)运算律。

  高中数学说课稿 18

  一、教材分析

  1.本节课内容在整个教材中的地位和作用

  概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。

  2.教学目标定位

  根据教学大纲要求、新课程标准精神,我确定了三个层面的教学目标。

  (1)基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;

  (2)过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;

  (3)情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。

  3.教学重难点

  重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。

  二、教法学法分析

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。

  为此,我设计了5个环节:

  ①创设情景——引入新课;

  ②交流探究——发现规律;

  ③启发引导——形成结论;

  ④训练小结——深化巩固;

  ⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。

  三、教学过程分析

  1.创设情景—引入新课

  教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示一道题目,以需要画y=2x?图像为引子,让学生画y=x?和y=2x?图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的`学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x?与y=ax?图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。

  由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。

  2.探究交流—发现规律

  从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。

  3.启发引导—形成结论

  前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。

  4.练习小结——巩固深化

  为了巩固和加深二次函数y=ax+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。

  这个过程中会产生学生之间的三次竞争:

  ①看谁解的快、用时最短;

  ②看谁书写的整齐;

  ③看谁做的对。

  这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。

  这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生"考试什么都不会,考完后什么都会"以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。

  5.延伸拓广——提高能力

  课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。

  高中数学说课稿 19

  一、教材分析

  1、《指数函数》在教材中的地位、作用和特点

  《指数函数》是人教版高中数学(必修)第一册第二章“函数”的第六节资料,是在学习了《指数》一节资料之后编排的。经过本节课的学习,既能够对指数和函数的概念等知识进一步巩固和深化,又能够为后面进一步学习对数、对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础,又因为《指数函数》是进入高中以后学生遇到的第一个系统研究的函数,对高中阶段研究对数函数、三角函数等完整的函数知识,初步培养函数的应用意识打下了良好的学习基础,所以《指数函数》不仅仅是本章《函数》的重点资料,也是高中学段的主要研究资料之一,有着不可替代的重要作用。

  此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体此刻细胞分裂、贷款利率的计算和考古中的年代测算等方面,所以学习这部分知识还有着广泛的现实意义。本节资料的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。

  2、教学目标、重点和难点

  经过初中学段的学习和高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了必须的认知结构,主要体此刻三个方面:

  知识维度:对正比例函数、反比例函数、一次函数,二次函数等最简单的函数概念和性质已有了初步认识,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。

  技能维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究《指数函数》的性质做好准备。

  素质维度:由观察到抽象的数学活动过程已有必须的体会,已初步了解了数形结合的思想。

  鉴于对学生已有的知识基础和认知能力的分析,根据《教学大纲》的要求,我确定本节课的教学目标、教学重点和难点如下:

  (1)知识目标:

  ①掌握指数函数的概念;

  ②掌握指数函数的图象和性质;

  ③能初步利用指数函数的概念解决实际问题;

  (2)技能目标:

  ①渗透数形结合的基本数学思想方法;

  ②培养学生观察、联想、类比、猜测、归纳的能力;

  (3)情感目标:

  ①体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题;

  ②经过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力;

  ③领会数学科学的应用价值。

  (4)教学重点:指数函数的图象和性质。

  (5)教学难点:指数函数的图象性质与底数a的关系。

  突破难点的关键:寻找新知生长点,建立新旧知识的联系,在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。

  二、教法设计

  由于《指数函数》这节课的特殊地位,在本节课的教法设计中,我力图经过这一节课的教学到达不仅仅使学生初步理解并能简单应用指数函数的知识,更期望能引领学生掌握研究初等函数图象性质的一般思路和方法,为今后研究其它的函数做好准备,从而到达培养学生学习能力的目的,我根据自我对“诱思探究”教学模式和“情景式”教学模式的认识,将二者结合起来,主要突出了几个方面:

  1、创设问题情景、按照指数函数的`在生活中的实际背景给出两个实例,充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,而这两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。

  2、强化“指数函数”概念、引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点,请学生思考对于底数a是否需要限制,如不限制会有什么问题出现,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。

  3、突出图象的作用、在数学学习过程中,图形始终使我们需要借助的重要辅助手段。一位数学家以往说过“数离形时少直观,形离数时难入微”,而在研究指数函数的性质时,更是直接由图象观察得出性质,所以图象发挥了主要的作用。

  4、注意数学与生活和实践的联系、数学的本质是来源于生活,服务于实践。在课堂教学的引入、例题的讲解和课外知识的拓展部分,都介绍了与指数函数息息相关的生活问题,力图使学生了解到数学的基础学科作用,培养学生的数学应用意识。

  三、学法指导

  本节课是在学习完“指数”的概念和运算后编排的,针对学生实际情景,我主要在以下几个方面做了尝试:

  1、再现原有认知结构。在引入两个生活实例后,请学生回忆有关指数的概念,帮忙学生再现原有认知结构,为理解指数函数的概念做好准备。

  2、领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数学学习。

  3、在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的理解和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。

  4、注意学习过程的循序渐进。在概念、图象、性质、应用、拓展的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不一样难度的题目设计将尽可能照顾到课堂学生的个体差异。

  四、程序设计

  在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的构成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。

  1、创设情景、导入新课

  教师活动:

  ①用电脑展示两个实例,第一个是计算机价格下降问题,第二个是生物中细胞分裂的例子;

  ②将学生按奇数列、偶数列分组。

  学生活动:

  ①分别写出计算机价格y与经过月份x的关系式和细胞个数y与分裂次数x的关系式,并互相交流;

  ②回忆指数的概念;

  ③归纳指数函数的概念;

  ④分析出对指数函数底数讨论的必要性以及分类的方法。

  设计意图:经过生活实例激发学生的学习动机,,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;

  2、启发诱导、探求新知

  教师活动:

  ①给出两个简单的指数函数并要求学生画它们的图象;

  ②在准备好的小黑板上规范地画出这两个指数函数的图象;

  ③板书指数函数的性质。

  学生活动:

  ①画出两个简单的指数函数图象;

  ②交流、讨论;

  ③归纳出研究函数性质涉及的方面;

  ④总结出指数函数的性质。

  设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的资料有着必须的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,到达进一步规范学生的作图习惯的目的,然后借助“函数作图器”用多媒体将指数函数的图象推广到一般情景,学生就会很自然的经过观察图象总结出指数函数的性质,同时对于底数的讨论也就变得顺理成章。

  高中数学说课稿 20

  一、教材分析:

  1、教材的地位与作用。

  本节资料是在学生学习了"事件的可能性的基础上来学习如何预测不确定事件(随机事件)发生的可能性的大小。"用概率预测随机发生的可能性大小,在日常生活、自然、科技领域有着广泛的应用,学习本单元知识,无论是今后继续深造(高中学习概率的乘法定理)还是参加社会实践活动都是十分必要的。概率的概念比较抽象,概率的定义学生较难理解。

  在教材的处理上,采取小单元教学,本节课安排让学生了解求随机事件概率的两种方法,目的是让学生能够比较系统地理解概率的意义及求概率的方法,为下头学习求比较复杂的情景的概率打下基础。

  2、重点与难点。

  重点:对概率意义的理解,经过多次重复实验,用频率预测概率的方法,以及用列举法求概率的方法。

  难点:对概率意义的'理解和用列举法求概率过程中在各种可能性相同条件下某一事件可能发生的总数及总的结果数的分析。

  二、目的分析:

  知识与技能:掌握用频率预测概率和用列举法求概率方法。

  过程与方法:组织学生自主探究,合作交流,引导学生观察试验和统计的结果,进而进行分析、归纳、总结,了解并感受概率的定义的过程,引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

  情感态度价值观:学生经历观察、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方法所震撼,激发学生学习数学的热情,增强对数学价值观的认识。

  三、教法、学法分析:

  引导学生自主探究、合作交流、观察分析、归纳总结,让学生经历知识(概率定义计算公式)的产生和发展过程,让学生在数学活动中学习数学、掌握数学,并能应用数学解决现实生活中的实际问题,教师是学生学习的组织者、合作者和指导者,精心设计教学情境,有序组织学生活动,让课堂充满生机活力,体现"教"为"学"服务这一宗旨。

  四、教学过程分析:

  1、引导学生探究。

  精心设计问题一,学生经过对问题一的探究,一方面复习前面学过的"确定事件和不确定事件"的知识,为学好本节资料理清知识障碍,二是让学生明确为什么要学习概率(如何预测随机事件可能性发生大小)。引导学生对问题二的探究与观察实验数据,使学生了解概率这一重要概念的实际背景,感受并相信随机事件的发生中存在着统计规律性,感受数学规律的真实的发现过程。

  2、归纳概括。

  学生从试验中得到的统计数字及概率呈现稳定在某一数值附近这一规律,让学生明确概率定义的由来。

  引导学生重新对问题一和问题二的探究,分析某事件发生的各种可能性在全部可能发生结果中所占比例,得到用列举法求概率的公式,引导学生进行理性思维,逻辑分析,既培养学生的分析问题能力,又让学生明确用列举法求概率这一简便快捷方法的合理性。

  3、举例应用。

  ⑴引导学生对教材书例题、问题一、问题二中问题的进一步分析与探究,让学生掌握用列举法求概率的方法。

  ⑵引导学生对练习中的问题思考与探究,巩固对概率公式的应用及加深对概率意义的理解。

  4、深化发展。

  ⑴设置3个小题目,引导学生归纳、分析、总结,加深对知识与方法的理解,并学会灵活运用。

  ⑵让学生设计活动资料,对知识进行升华和拓展,引导学生创造性地运用知识思考问题和解决问题,从而培养学生的创新意识和创新能力。

【高中数学说课稿】相关文章:

高中数学的说课稿04-19

高中数学经典说课稿11-25

高中数学《数列》说课稿01-18

高中数学说课稿06-12

高中数学数列说课稿06-07

高中数学说课稿06-13

高中数学数列说课稿11-20

高中数学优秀说课稿03-03

高中数学向量说课稿09-09

高中数学优秀说课稿03-08