高中数学一等奖说课稿

时间:2024-08-05 19:00:59 昌升 高中说课稿 我要投稿

北师大版高中数学一等奖说课稿(通用11篇)

  作为一位杰出的老师,常常需要准备说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。优秀的说课稿都具备一些什么特点呢?以下是小编精心整理的北师大版高中数学一等奖说课稿,仅供参考,希望能够帮助到大家。

北师大版高中数学一等奖说课稿(通用11篇)

  高中数学一等奖说课稿 1

  我是xx场的xx号考生。今日,我说课的资料是xx。对于本节课,我将从教什么、怎样教、为什么这么教来阐述本次说课。

  一、说教材

  教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

  正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象,主要资料便是正弦函数的性质,教材经过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。并且教材突出了正弦函数图象的重要性,能够帮忙学生更深刻的认识、理解、记忆正弦函数的性质。

  二、说学情

  合理把握学情是上好一堂课的基础,本次课所应对的学生群体具有以下特点。

  高中的学生掌握了必须的基础知识,思维较敏捷,动手能力较强,但理解能力、自主学习能力较缺乏。基于此,本节课注重引导学生动脑思考,更富有启发性。并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。

  三、说教学目标

  根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:

  (一)知识与技能

  会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。

  (二)过程与方法

  经过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的能力。

  (三)情感态度价值观

  经过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。

  四、说教学重难点

  本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点

  (一)教学重点

  由正弦函数的图象得到正弦函数的性质。

  (二)教学难点

  正弦函数的周期性和单调性。

  五、说教法和学法

  此刻的文盲不是不懂字的人,而是没有掌握学习方法的人。因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中特别重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。

  六、说教学过程

  在这节课的教学过程中,我注重突出重点,条理清晰,紧凑合理。各项活动的安排也注重互动、交流,限度的调动学生参与课堂的积极性、主动性。

  (一)新课导入

  首先是导入环节,在这一环节中我将采用复习的导入方法。

  我会让学生回忆正弦函数的概念,以及上节课所学的正弦函数图象,让学生根据图象思考正弦函数有哪些性质从而引出课题——《正弦函数的性质》。

  这样设计能够让学生对前面的知识进行充分的回顾,为本节课的顺利开展奠定基础。

  (二)新知探索

  接下来是新课讲授环节,在这一环节我将采用讲解法、小组合作探究的方式进行。

  让学生自我经过五点作图法画出正弦函数的图象,并在大屏幕上展示正弦函数的标准图象。

  学生一边看投影,一边思考如下问题:

  (1)正弦函数的定义域是什么

  (2)正弦函数的值域是什么

  (3)正弦函数的最值情况如何

  (4)正弦函数的周期

  (5)正弦函数的奇偶性

  (6)正弦函数的递增区间

  给学生十分钟的时间小组讨论,之后小组代表发言,师生共同总结。

  1、定义域:y=sinx定义域为R

  2、值域:引导学生回忆单位圆中的正弦函数线,发现值域为[—1,1]

  3、最值:根据值域的确定得到在何处取得最值以及函数的正负性。

  4、周期性:经过观察图象引导学生发现正弦函数的图象是有规律不断重复出现的`,让学生思考后发现是每隔2π重复出现一次,得出y=sinx的最小正周期是2π。之后经过诱导公式证明。

  5、奇偶性:在刚才经过诱导公式证明后顺势提出公式,总结得到正弦函数是奇函数。

  6、单调性:最终让学生根据刚才所得到的结论自我尝试总结正弦函数的单调性。

  在探究完正弦函数性质后,利用单位圆和正弦函数图象理解和记忆正弦函数的性质,这样的安排能够让学生及时巩固正弦函数的性质,并且还能够结合之前所学的单位圆,三角函数线等知识,让学生感受到知识间的联系。

  (三)课堂练习

  第三环节是巩固环节,多媒体出示书上例题2:用五点法画出函数的简图,并根据图象讨论它的性质。

  经过这样的练习,既巩固了学生学过的知识,又进一步培养了学生理解、分析、推理的能力,趣味的知识在学生们的积极主动的探索中显得更有味道。

  (四)小结作业

  最终一个环节为小结作业环节,关于课堂小结,我打算让学生自我来总结。这样既发挥了学生的主体性,又能够提高学生的总结概括能力,让我在第一时间得到学习反馈,及时加以疏导。

  在作业布置上,我让学生思考余弦函数的图象与性质是什么样的。

  经过比较灵活的题目呈现,能够让学生结合本节课的知识进而思考后续的知识。

  高中数学一等奖说课稿 2

  一、教材分析(说教材):

  1、教材所处的地位和作用:

  本节内容在全书和章节中的作用是:《xx》是中数学教材第xx册第xx章第xx节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。

  2、教育教学目标:

  根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

  (1)知识目标:

  (2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力。

  (3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

  3、重点,难点以及确定依据:

  下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

  二、教学策略(说教法)

  1、教学手段:

  如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。

  2、教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  3、学情分析:(说学法)

  (1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

  (2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

  (3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

  4、教学程序及设想:

  (1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

  (2)由实例得出本课新的知识点

  (3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

  (4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

  (5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的.地位和应用,并且逐步培养学生良好的个性品质目标。

  (6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

  (7)板书

  (8)布置作业。

  针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

  三、教学程序:

  (一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

  高中数学集合教学反思

  集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

  第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

  第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

  第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

  高中数学一等奖说课稿 3

  我叫xx,来自甘肃省嘉峪关市第一中学。今天我说课的课题是《一元二次不等式的解法》(第一课时)。下面我将围绕本节课"教什么?"、"怎样教?"以及"为什么这样教?"三个问题,从教材内容分析、教法学法分析、教学过程分析和课堂意外预案等几个方面逐一加以分析和说明。

  一、教材内容分析:

  1、本节课内容在整个教材中的地位和作用。

  概括地讲,本节课内容的地位体现在它的基础性,作用体现在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式组的延续和深化,对已学习过的集合知识的巩固和运用具有重要的作用,也与后面的函数、数列、三角函数、线形规划、直线与圆锥曲线以及导数等内容密切相关。许多问题的解决都会借助一元二次不等式的解法。因此,一元二次不等式的解法在整个高中数学教学中具有很强的基础性,体现出很大的工具作用。

  2、教学目标定位。

  根据教学大纲要求、高考考试大纲说明、新课程标准精神、高一学生已有的知识储备状况和学生心理认知特征,我确定了四个层面的教学目标。第一层面是面向全体学生的知识目标:熟练掌握一元二次不等式的两种解法,正确理解一元二次方程、一元二次不等式和二次函数三者的关系。第二层面是能力目标,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力。第三层面是德育目标,通过对解不等式过程中等与不等对立统一关系的认识,向学生逐步渗透辨证唯物主义思想。第四层面是情感目标,在教师的启发引导下,学生自主探究,交流讨论,培养学生的合作意识和创新精神。

  3、教学重点、难点确定。

  本节课是在复习了一次不等式的解法之后,利用二次函数的图象研究一元二次不等式的解法。只要学生能够理解一元二次方程、一元二次不等式和二次函数三者的关系,并利用其关系解不等式即可。因此,我确定本节课的教学重点为一元二次不等式的解法,关键是一元二次方程、一元二次不等式和二次函数三者的关系。

  二、教法学法分析:

  数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,使学生在学习中培养坚强的意志品质、形成良好的道德情感。为了更好地体现课堂教学中"教师为主导,学生为主体"的教学关系和"以人为本,以学定教"的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。我设计了创设情景——引入新课,交流探究——发现规律,启发引导——形成结论,练习小结——深化巩固,思维拓展——提高能力,五个环环相扣、层层深入的教学环节,在教学中注意关注整个过程和全体学生,充分调动学生积极参与教学过程的每个环节。

  三、教学过程分析:

  1、创设情景——引入新课。我们常说"兴趣是最好的老师",长期以来,学生对学习数学缺乏兴趣,甚至失去信心,一个重要的原因,是老师在教学中不重视学生对学习的情感体验,教学应该充分考虑学生的.情感和需要,想方设法让学生在学习中树立信心,感受学习的乐趣。根据教材内容的安排,我以学生熟悉的画一次函数图象、求一次方程和一次不等式的解为背景知识切入,设置一个练习题组,一方面让学生总结复习已有知识,为后面学习二次不等式的解法打下基础,做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,然后以2004年江苏省的一道高考试题为引子,引入本节课的新授内容。对于本题,引导学生,利用上面解练习题组1的方法,画出二次函数图象来解答。二次函数是初中数学的重要内容,本题又给出了函数图象上许多点,相信学生画出图象应该不成问题,只要教师适当点拨,学生不难得到正确答案。以高考试题为背景引入新课,可以提高学生兴趣,抓住学生眼球,吸引学生注意力,还可以让学生实实在在感受到,高考题就在我们的课本中,就在我们平常的练习中。

  2、探究交流——发现规律。从特殊到一般是我们发现问题、寻求规律、揭示问题本质最常用的方法之一。我把课本例题1、2编为练习题组(一),交由学生用上面解高考题的方法——图象法去解,学生由于熟知二次函数图象,求解应该不会有太大的问题。在这个过程中,教师要启发引导学生注意对比两题的异同,组织引导学生展开交流讨论,探讨第(2)题能不能先把二次项系数化正以后再构造函数画图求解。然后达成共识,如果二次项系数为负数时,先做等价转化,把二次项系数化为正数再解,课本19页例3、例4作为题组(二),继续让学生用上面的图象法,由学生自己求解,这时我及时提示学生注意这两题与题组(一)中两题的不同(例1、例2对应方程都有两个不等实根,例3对应方程有两相等实根,例4对应方程无实根)。两个题组的练习之后,可以寻求解二次不等式的一般规律。

  3、启发引导——形成结论。前面两个题组的四个小题,基本涵盖了一般一元二次不等式解的各种情况,进一步启发引导学生将特殊、具体题目的结论做一般化总结,与学生一起就△>0,△<0,△=0c="">0或ax2+bx+c<0a="">0)的解的情况应该水到渠成。至此,学生可以感受到,解二次不等式。

  ①将二次项系数化为正数,

  ②求解二次方程ax2+bx+c=0的根。

  ③根据①后的二次不等式的符号写出解集即可,必要时也可以结合图象写解集。这样我们就得到了二次不等式的另外一种解法(可称为"三步曲"法)。

  4、训练小结——巩固深化。为了巩固和加深二次不等式的两种解法,接下来及时组织学生进行课堂练习,完成课本21页练习1-4题。本环节请不同层次的学生在黑板上书写解题过程,之后师生共同纠正问题,规范解题过程的书写。

  5、延伸拓宽——提高能力。课堂教学既要面向全体学生,又应关注学生的个体差异。体现分类推进,分层教学的原则。为此,我又设计了一个提高练习题组,共有三道备选题目,以供程度较好学有余力的学生能够更好的展示自己的解题能力,取得更进一步的提高。

  四、课堂意外预案:

  新课程理念下的教学更多的关注学生自主探究、关注学生的个性发展,鼓励学生勇于提出问题,培养学生思维的批评性。在课堂上学生往往会提出让老师感到"意外"的问题,我在平时的教学中重视对"课堂意外预案"的探索和思考,备课时尽量设想课堂中可能会出现的各种情况,做到有备无患,以免在课堂中学生提出让自己出乎意料的问题,使自己陷入被动尴尬境地。结合以往经验,在本节课,我提出两个"意外预案".

  1、学生在做课本练习1(x+2)(x-3)>0时,可能会问到转化为不等式组{或{求解对不对。学生提出的问题,想法非常好,应给予肯定和鼓励,这与下节简单分式不等式和高次不等式的解法有关,是解不等式的另一种解法——等价转化法,不在本节课之列。

  2、根据以往的经验,在解(x-1)(x+2)>1一类的不等式的时候,由于受方程(x+1)(x+2)=0可转化为x-1=0或x+2=0求解的影响,有可能会出现将不等式转化为不等式组{来求解的错误做法,教师要关注学生,及时发现问题并给予纠正,指出上面的转化不是等价转化。

  以上是我对本节课的一些粗浅的认识和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。谢谢大家!

  高中数学一等奖说课稿 4

  一、说设计理念

  《数学课程标准》指出要让学生感受生活中处处有数学,用数学知识解决生活中的实际问题。

  基于这一理念,我在教学过程中力求联系学生生活实际和已有的知识经验,从学生感兴趣的素材,设计新颖的导入与例题教学,给数学课富予新的生命力。课堂中力求构建一种自主探究、和谐合作的教学氛围,让学生经历知识的探究过程,培养学生感受生活中的数学和用数学知识解决生活问题的能力,体验数学的应用价值。

  二、教材分析:

  (一)教材的地位和作用

  有关统计图的认识,小学阶段主要认识条形统计图、折线统计图和扇形统计图。考虑到扇形统计图在日常生活中的广泛应用,《标准》把它作为必学内容安排在本单元。本单元是在前面学习了条形统计图和折线统计图的特点和作用的基础上进行教学的。主要通过熟悉的事例使学生体会到扇形统计图的.实用价值。

  (二)教学目标

  1、联系生活情境了解扇形统计图的特点和作用

  2、能读懂扇形统计图,从中获取有效的信息。

  3、让学生在观察、比较、讨论和交流中体会扇形统计图反映的是整体和部分的关系。

  (三)教学重点:

  1、能读懂扇形统计图,理解扇形统计图的特点和作用,并能从中获取有效信息。

  2、认识折线统计图,了解折线统计图的特点。

  (四)教学难点:

  1、能从扇形统计图中获得有用信息,并做出合理推断。

  2、能根据统计图和数据进行数据变化趋势的分析。

  二、学情分析

  本单元的教学是在学生已有统计经验的基础上,学习新知的。六年级的学生已经学习了条形统计图和折线统计图,知道他们的特点,并具有一定的概括、分析能力,在此基础上,通过新旧知识对比,自然生成新知识点。

  三、设计理念和教法分析

  1、本堂课力争做到由“关注知识”转向“关注学生”,由“传授知识”转向“引导探索”,“教师是组织者、领导者。”将课堂设置问题给学生,让学生自己获取信息、分析信息,自主探索、合作交流,参与知识的构建。

  2、运用探究法。探究学习的内容以问题的形式出现在教师的引导下,学生自主探究,让学生在课堂上多活动、多思考,自主构建知识体系。引导学生获取信息并合作交流。

  四、说学法

  《数学课程标准》指出有效的数学学习不能单纯的依赖模仿和记忆,动手操作、自主探索与合作交流是学生学习数学的重要方式。教学时,我通过学生感兴趣的话题引入,引导学生关注身边的数学,使学生体会到观察、概括、想象、迁移等数学学习方法,在师生互动中让每个学生都动口,动手,动脑。培养学生学习的主动性和积极性。

  五、说教学程序

  本课分成创设情境,感知特点——分析数据,理解特征——尝试制图,看图分析——实践应用,全课总结四环节。

  六、说教学过程

  (一)复习引新

  1、复习旧知

  提问:我们学习过哪些统计方法?其中条形统计图和折线统计图各有什么特点?

  2、引入新课

  (二)自主探索,学习新知

  新知识教学分二步教学:第一步整体感知,看懂统计图,理解特征,这是本节课的重点。在教学中,以知识迁移的方式建立新旧知识之间的联系,放手让学生独立思考,互相合作,进一步了解统计图的特征。

  第二步实践应用环节。在教学中,精心地选取了大量的生活素材,使统计知识与生活建立紧密的联系。根据统计图回答问题,是让学生运用到刚才学习到的知识来解决生活中的一些问题,并巩固刚才所学的知识,为学生自己发现问题、提出问题及自己解决问题提供了较大的空间。同时,让学生感悟由于数据变化带来的启示,并能合理地进行推理与判断

  三、课堂总结

  四、布置作业。

  五、板书设计:

  高中数学一等奖说课稿 5

  一、说教材

  1、教材的地位、作用及编写意图

  《对数函数》出此刻职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等资料,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考资料。

  2、教学目标的确定及依据。

  依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

  (1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

  (2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

  (3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

  (4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

  3、教学重点、难点及关键

  重点:对数函数的概念、图象和性质;

  难点:利用指数函数的图象和性质得到对数函数的图象和性质;

  关键:抓住对数函数是指数函数的反函数这一要领。

  二、说教法

  大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情景,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地理解并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

  三、说学法

  教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

  (1)对照比较学习法:学习对数函数,处处与指数函数相对照。

  (2)探究式学习法:学生经过分析、探索、得出对数函数的定义。

  (3)自主性学习法:经过实验画出函数图象、观察图象自得其性质。

  (4)反馈练习法:检验知识的应用情景,找出未掌握的资料及其差距。

  四、说教学程序

  1、复习导入

  (1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

  设计意图:设计的提问既与本节资料有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。

  (2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

  设计意图:这样的导言可激发学生求知欲,使学生渴望明白问题的答案。

  2、认定目标(出示教学目标)

  3、导学达标

  按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

  (1)对数函数的概念

  引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a》0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a》0且a≠1.从而引出对数函数的.概念,展示课件。

  设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于理解。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,经过比较充分体现指数函数及对数函数的内在联系。

  (2)对数函数的图象

  提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都能够根据函数的解析式,列表、描点画图。再研究一下,我们还能够用什么方法画出对数函数的图象呢?

  让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

  教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

  方法一(描点法)首先列出x,y(y=log2x,y=logx)值的对应表,因为对数函数的定义域为x》0,所以可取x=1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

  方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就能够得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=logx的图象,再出示课件,教师加以解释。

  设计意图:用这种对称变换的方法画函数的图象,能够加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样能够充分调动学生自主学习的积极性。

  (3)对数函数的性质

  在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a》1与0《a《1两种情况列出对数函数图象和性质表,体现了从"特殊到一般"、"从具体到抽象"的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生比较着记忆。

  设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮忙,学生易于理解易于掌握,并且利用表格,能够突破难点。

  由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

  设计意图:经过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

  4、巩固达标(见课件)

  这一训练是为了培养学生利用所学知识解决实际问题的能力,经过这个环节学生能够加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

  5、反馈练习(见课件)

  习题是对学生所学知识的反馈过程,教师能够了解学生对知识掌握的情况。

  6、归纳总结(见课件)

  引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,所以,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

  7、课外作业:

  (1)完成P782、3题

  (2)当底数a》1与0《a《1时,底数不一样,对数函数图象有什么持点?

  高中数学一等奖说课稿 6

  一、教材分析

  1、教学内容

  本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。

  2、教材的地位和作用

  函数单调性是高中数学中相当重要的一个基础知识点,是研究和讨论初等函数有关性质的基础。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。

  3、教材的重点﹑难点﹑关键

  教学重点:函数单调性的概念和判断某些函数单调性的方法。明确单调性是一个局部概念。

  教学难点:领会函数单调性的实质与应用,明确单调性是一个局部的概念。

  教学关键:从学生的学习心理和认知结构出发,讲清楚概念的形成过程、

  4、学情分析

  高一学生正处于以感性思维为主的年龄阶段,而且思维逐步地从感性思维过渡到理性思维,并由此向逻辑思维发展,但学生思维不成熟、不严密、意志力薄弱,故而整个教学环节总是创设恰当的问题情境,引导学生积极思考,培养他们的逻辑思维能力。从学生的认知结构来看,他们只能根据函数的图象观察出“随着自变量的增大函数值增大”等变化趋势,所以在教学中要充分利用好函数图象的直观性,发挥好多媒体教学的优势;由于学生在概念的掌握上缺少系统性、严谨性,在教学中注意加强。

  二、目标分析

  (一)知识目标:

  1、知识目标:理解函数单调性的概念,掌握判断一些简单函数的单调性的方法;了解函数单调区间的概念,并能根据函数图象说出函数的单调区间。

  2、能力目标:通过证明函数的单调性的学习,使学生体验和理解从特殊到一般的数学归纳推理思维方式,培养学生的观察能力,分析归纳能力,领会数学的归纳转化的.思想方法,增加学生的知识联系,增强学生对知识的主动构建的能力。

  3、情感目标:让学生积极参与观察、分析、探索等课堂教学的双边活动,在掌握知识的过程中体会成功的喜悦,以此激发求知欲望。领会用运动变化的观点去观察分析事物的方法。通过渗透数形结合的数学思想,对学生进行辨证唯物主义的思想教育。

  (二)过程与方法

  培养学生严密的逻辑思维能力以及用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质,通过函数的单调性的学习,掌握自变量和因变量的关系。通过多媒体手段激发学生学习兴趣,培养学生发现问题、分析问题和解题的逻辑推理能力。

  三、教法与学法

  1、教学方法

  在教学中,要注重展开探索过程,充分利用好函数图象的直观性、发挥多媒体教学的优势。本节课采用问答式教学法、探究式教学法进行教学,教师在课堂中只起着主导作用,让学生在教师的提问中自觉的发现新知,探究新知,并且加入激励性的语言以提高学生的积极性,提高学生参与知识形成的全过程。

  2、学习方法

  自我探索、自我思考总结、归纳,自我感悟,合作交流,成为本节课学生学习的主要方式。

  四、过程分析

  本节课的教学过程包括:问题情景,函数单调性的定义引入,增函数、减函数的定义,例题分析与巩固练习,回顾总结和课外作业六个板块。这里分别就其过程和设计意图作一一分析。

  (一)问题情景:

  为了激发学生的学习兴趣,本节课借助多媒体设计了多个生活背景问题,并就图表和图象所提供的信息,提出一系列问题和学生交流,激发学生的学习兴趣和求知欲望,为学习函数的单调性做好铺垫。(祥见课件)

  新课程理念认为:情境应贯穿课堂教学的始终。本节课所创设的生活情境,让学生亲近数学,感受到数学就在他们的周围,强化学生的感性认识,从而达到学生对数学的理解。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

  (二)函数单调性的定义引入

  几何画板动画演示,请学生认真观察,并回答问题:通过学生已学过的函数y=2x+4,,的图象的动态形式形象出x、y间的变化关系,使学生对函数单调性有感性认识。,进行比较,分析其变化趋势。并探讨、回答以下问题:

  问题1、观察下列函数图象,从左向右看图象的变化趋势?

  问题2:你能明确说出“图象呈上升趋势”的意思吗?

  通过学生的交流、探讨、总结,得到单调性的“通俗定义”:

  从在某一区间内当x的值增大时,函数值y也增大,到图象在该区间内呈上升趋势再到如何用x与f(x)来描述上升的图象?通过问题逐步向抽象的定义靠拢,将图形语言转化为数学符号语言。几何画板的灵活使用,数形有机结合,引导学生从图形语言到数学符号语言的翻译变得轻松。

  (三)增函数、减函数的定义

  在前面的基础上,让学生讨论归纳:如何使用数学语言来准确描述函数的单调性?在学生回答的基础上,给出增函数的概念,同时要求学生讨论概念中的关键词和注意点。

  设计意图:通过给出函数单调性的严格定义,目的是为了让学生更准确地把握概念,理解函数的单调性其实也叫做函数的增减性,它是对某个区间而言的,它是一个局部概念,同时明确判定函数在某个区间上的单调性的一般步骤。这样处理,同时也是让学生感悟、体验学习数学感念的方法,提高其个性品质。

  五、评价分析

  有效的概念教学是建立在学生已有知识结构基础上,,因此在教学设计过程中注意了:

  第一、教要按照学的法子来教;

  第二、在学生已有知识结构和新概念间寻找“最近发展区”;

  第三、强化了重探究、重交流、重过程的课改理念。让学生经历“创设情境——探究概念——注重反思——拓展应用——归纳总结”的活动过程,体验了参与数学知识的发生、发展过程,培养“用数学”的意识和能力,成为积极主动的建构者。

  本节课围绕教学重点,针对教学目标,以多媒体技术为依托,展现知识的发生和形成过程,使学生始终处于问题探索研究状态之中,激情引趣,并注重数学科学研究方法的学习,是顺应新课改要求的,是研究性教学的一次有益尝试。

  高中数学一等奖说课稿 7

  一、教材分析

  本课时的内容是数列的定义,通项公式及运用;本课是在学习映射、函数知识基础上研究数列,既对进一步理解数列,又为今后研究等差、等比数列打下基础,起着承前启后的重要作用。

  首先,数列,特别是等差数列与等比数列,有着较为广泛的应用。值得一提的是,数列在产品尺寸标准化方面有着重要作用。例如在我国已颁布的供各种生产部门设计产品尺寸用的国家标准,就是按等比数列对产品尺寸进行分级的。

  其次,数列在整个中学数学教学内容中,处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫。应该说:新课本采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是将各知识勾通方面发挥了重要作用。

  最后,由于不少关系恒等变形、解方程(组)以及一些带有综合性的数学问题都与等差数列、等比数列有关,从而有助于培养学生综合运用知识解决问题的能力。因此本节内容起到一个巩固旧知,熟练方法,拓展新知的承接作用。

  二、学生情况分析

  学习障碍:

  本节课是学习数列的起始课,在学习中会遇到下列障碍:

  1、对数列定义中的关键词"按一定次序"的理解有些模糊。

  2、对数列与函数的关系认识不清

  3、对数列的表示,特别是通项公式an=f(n)感到困惑,对数列的通项公式可以不只一个觉得不可思议

  4、由数列的前几项写不出数列的通项公式

  学习策略:

  (1)为激发学生学习数列的兴趣,体会数列知识在实际生活中的作用,可由实际问题引入,从中抽象出数列要研究的问题,使学生对所要研究的内容心中有数,如书中所给的例子等

  (2)数列中蕴含的.函数思想是研究数列指导思想,应及早引导学生发现数列与函数的关系,在教学中强调数列的项是按一定顺序排列的,"次序"便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,函数表示法有列表法、图象法、解析式法,类似地,数列就有列举法、图示法、通项公式法。

  (3)由数列的通项公式写出数列的前几项是简单的代入法,这一例题为写通项公式作一些准备,尤其是对程度差的学生,可多举几个例子,让学生观察归纳通项公式与各项的结构关系,尽量为写通项公式提供帮助

  (4)由数列的前几项写出数列的一个通项公式是学生学习中的一个难点,要帮助学生分析各项中的结构特征,让学生依据前几项的规律,猜想该数列的下一项或下几项的值,以便寻求项与项数的关系。最后老师与学生共同归纳一些规律性的结论。

  1、并非所有数列都能写出它的通项公式;如④

  2、有些数列的通项公式在形式上不一定是唯一的。如数列1,-1,1,-1,1,-1,...的通项可写成或或等

  3、当一个数列出现""、"-"相间时,应先把符号分离出来,用等来控制;

  4、有些数列的通项公式可以用分段的形式来表示;

  总之,本节课是数列的起始课,设置情景、激发兴趣有利于学生学好本章知识;把数列与集合、函数对比学习,有利于巩固旧知识,掌握新知识,使所学知识形成系统化;教法和学法上突出教材重点、力求突破难点,加深学生对知识的理解。较多地采用提问(包括设问);在教学材料呈现上以多媒体形式给出。例题的配备由浅入深、渗透了思维活动组织上由此及彼的类比推理概括的方法。贯彻"教师为主导、学生为主体、探究为主线、思维为主攻"的教学思想,采取"精讲、善导、激趣、引思"的八字方针。

  高中数学一等奖说课稿 8

  一、教材分析

  1、教材内容

  本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》§2。1。3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用定义解决一些简单问题。

  2、教材所处地位、作用

  函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质。通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。通过上述活动,加深对函数本质的认识。函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础。此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一。从方法论的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法。

  3、教学目标

  (1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性

  的方法;

  (2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的'定义解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质。

  4、重点与难点

  教学重点(1)函数单调性的概念;

  (2)运用函数单调性的定义判断一些函数的单调性。

  教学难点(1)函数单调性的知识形成;

  (2)利用函数图象、单调性的定义判断和证明函数的单调性。

  二、教法分析与学法指导

  本节课是一节较为抽象的数学概念课,因此,教法上要注意:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性。

  2、在运用定义解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决。

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用。具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达。

  4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性。

  在学法上:

  1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力。

  2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃。

  三、 教学过程

  1、满足在定义域上的单调性的讨论。

  2、重视学生发现的过程。如:充分暴露学生将函数图象(形)的特征转化为函数值(数)的特征的思维过程;充分暴露在正、反两个方面探讨活动中,学生认知结构升华、发现的过程。

  3、重视学生的动手实践过程。通过对定义的解读、巩固,让学生动手去实践运用定义。

  4、重视课堂问题的设计。通过对问题的设计,引导学生解决问题。

  高中数学一等奖说课稿 9

  今天我要进行说课的课题是高中数学必修一第一章第三节第一课时《函数单调性与最大(小)值》。我将从教材分析;教学目标分析;教法、学法;教学过程;教学评价五个方面来陈述我对本节课的设计方案。恳请在座的专家评委批评指正。

  一、教材分析

  1、教材的地位和作用

  (1)本节课主要对函数单调性的学习;

  (2)它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;(可以看看这一课题的前后章节来写)

  (3)它是历年高考的热点、难点问题

  2、教材重、难点

  重点:函数单调性的定义

  难点:函数单调性的证明

  重难点突破:在学生已有知识的基础上,通过认真观察思考,并通过小组合作探究的办法来实现重难点突破。(这个必须要有)

  二、教学目标

  知识目标:

  (1)函数单调性的定义

  (2)函数单调性的证明

  能力目标:培养学生全面分析、抽象和概括的能力,以及了解由简单到复杂,由特殊到一般的化归思想

  情感目标:培养学生勇于探索的精神和善于合作的意识

  三、教法学法分析

  1、教法分析

  “教必有法而教无定法”,只有方法得当才会有效。新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。本着这一原则,在教学过程中我主要采用以下教学方法:开放式探究法、启发式引导法、小组合作讨论法、反馈式评价法

  2、学法分析

  “授人以鱼,不如授人以渔”,最有价值的知识是关于方法的只是。学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。在学法选择上,我主要采用:自主探究法、观察发现法、合作交流法、归纳总结法。

  四、教学过程

  1、以旧引新,导入新知

  通过课前小研究让学生自行绘制出一次函数f(x)=x和二次函数f(x)=x^2的图像,并观察函数图象的特点,总结归纳。通过课上小组讨论归纳,引导学生发现,教师总结:一次函数f(x)=x的图像在定义域是直线上升的,而二次函数f(x)=x^2的图像是一个曲线,在(-∞,0)上是下降的,而在(0,+∞)上是上升的。(适当添加手势,这样看起来更自然)

  2、创设问题,探索新知

  紧接着提出问题,你能用二次函数f(x)=x^2表达式来描述函数在(-∞,0)的图像?教师总结,并板书,揭示函数单调性的定义,并注意强调可以利用作差法来判断这个函数的单调性。

  让学生模仿刚才的表述法来描述二次函数f(x)=x^2在(0,+∞)的图像,并找个别同学起来作答,规范学生的数学用语。

  让学生自主学习函数单调区间的定义,为接下来例题学习打好基础。

  3、例题讲解,学以致用

  例1主要是对函数单调区间的`巩固运用,通过观察函数定义在(—5,5)的图像来找出函数的单调区间。这一例题主要以学生个别回答为主,学生回答之后通过互评来纠正答案,检查学生对函数单调区间的掌握。强调单调区间一般写成半开半闭的形式

  例题讲解之后可让学生自行完成课后练习4,以学生集体回答的方式检验学生的学习效果。

  例2是将函数单调性运用到其他领域,通过函数单调性来证明物理学的波意尔定理。这是历年高考的热点跟难点问题,这一例题要采用教师板演的方式,来对例题进行证明,以规范总结证明步骤。一设二差三化简四比较,注意要把f(x1)-f(x2)化简成和差积商的形式,再比较与0的大小。

  学生在熟悉证明步骤之后,做课后练习3,并以小组为单位找部分同学上台板演,其他同学在下面自行完成,并通过自评、互评检查证明步骤。

  4、归纳小结

  本节课我们主要学习了函数单调性的定义及证明过程,并在教学过程中注重培养学生勇于探索的精神和善于合作的意识。

  5、作业布置

  为了让学生学习不同的数学,我将采用分层布置作业的方式:一组 习题1、3A组1、2、3 ,二组 习题1、3A组2、3、B组1、2

  6、板书设计

  我力求简洁明了地概括本节课的学习要点,让学生一目了然。

  五、教学评价

  本节课是在学生已有知识的基础上学习的,在教学过程中通过自主探究、合作交流,充分调动学生的积极性跟主动性,及时吸收反馈信息,并通过学生的自评、互评,让内部动机和外界刺激协调作用,促进其数学素养不断提高。

  高中数学一等奖说课稿 10

  一、教材分析

  本节是人教A版高中数学必修三第二章《统计》中的第三节 “变量间的相关关系” 的第二课时。在上一课时,学生已经懂得根据两个相关变量的数据作出散点图,并利用散点图直观认识变量间的相关关系。这节课是在上一节课的基础上介绍了用线性回归的方法研究两个变量的相关性和最小二乘法的思想。

  从全章的内容上看,线性回归方程的建立不仅是本节的难点,也是本章内容的难点之一。线性回归是最简单的回归分析,学好回归分析是学好统计学的重要基础。

  二、教学目标

  根据课标的要求及前面的分析,结合高二学生的认知特点确定本节课的教学目标如下:

  知识与技能:

  1. 知道最小二乘法和回归分析的思想;

  2. 能根据线性回归方程系数公式求出回归方程

  过程与方法:

  经历线性回归分析过程,借助图形计算器得出回归直线,增强数学应用和使用技术的意识。

  情感态度与价值观

  通过合作学习,养成倾听别人意见和建议的.良好品质

  三、重点难点分析:

  根据目标分析,确定教学重点和难点如下:

  教学重点:

  1. 知道最小二乘法和回归分析的思想;

  2.会求回归直线

  教学难点:

  建立回归思想,会求回归直线

  四、教学设计

  问题1. 利用图形计算器作出散点图,并指出上面的两个变量是正相关还是负相关?

  教师提问,学生通过动手操作得出散点图并回答,以旧“探”新:对旧的知识进行简要的提问复习,为本节课学生能够更好的建构新的知识做好充分的准备;尤其为一些后进生能够顺利的完成本节课的内容提供必要的基础。

  教师引导:通过上节课的学习,我们知道散点图是研究两个变量相关关系的一种重要手段。下面,请同学们根据得出的散点图,思考下面的问题2.

  问题2. 甲同学判断某人年龄在65岁时体内脂肪含量百分比可能为34,乙同学判断可能为25,而丙同学则判断可能为37,你对甲,

  乙,丙三个同学的判断有什么看法?学生能够表达自己的看法。有的学生可能会认为乙同学的判断是错误的;有的学生可能认为甲乙丙三个同学的判断都是对的,答案不唯一。该问题具有探究性、启发性和开放性。鼓励学生大胆表达自己的看法。通过设计该问题,引导学生自己发现问题,注意到散点图中点的分布具有一定规律,体会观测点与回归直线的关系;进而引起学生的对本节课内容的兴趣。

  问题3. 反思问题,你还可以提出哪些问题吗?小组讨论,看哪个小组提出的问题多在小组讨论的形式下和比较哪个小组提出的问题多,学生之间会充分的进行交流,提出问题通过小组讨论比较,调动学生的学习积极性和兴趣,活跃课堂气氛,达到学生自己提出问题的效果,培养学生的学生创新思维和问题意识。

  高中数学一等奖说课稿 11

  我叫xx,来自湖南科技大学。我说课的题目是《算法的概念》,内容选自于新课程人教A版必修3第一章第一节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教学方法分析、学情分析、教学过程分析等五大方面来阐述我对这节课的分析和设计:

  一、教材分析

  1、教材所处的地位和作用

  现代社会是一个信息技术发展很快的社会,算法进入高中数学正是反映了时代的需要,它是当今社会必备的基础知识,算法的学习是使用计算机处理问题前的一个必要的步骤,它可以让学生们知道如何利用现代技术解决问题。又由于算法的具体实现上可以和信息技术相结合。因此,算法的学习十分有利于提高学生的逻辑思维能力,培养学生的理性精神和实践能力。

  2、教学的重点和难点

  重点:初步理解算法的定义,体会算法思想,能够用自然语言描述算法难点:把自然语言转化为算法语言。

  二、教学目标分析

  1、知识目标:了解算法的含义,体会算法的思想;能够用自然语言描述解决具体问题的算法;理解正确的算法应满足的要求。

  2、能力目标:让学生感悟人们认识事物的一般规律:由具体到抽象,再有抽象到具体,培养学生的观察能力,表达能力和逻辑思维能力。

  3、情感目标:对计算机的算法语言有一个基本的了解,明确算法的要求,认识到计算机是人类征服自然的一有力工具,进一步提高探索、认识世界的能力。

  三、教学方法分析

  采用"问题探究式"教学法,以多媒体为辅助手段,让学生主动发现问题、分析问题、解决问题,培养学生的探究论证、逻辑思维能力。

  四、学情分析

  算法这部分的使用性很强,与日常生活联系紧密,虽然是新引入的章节,但很容易激发学生的学习兴趣。在教师的引导下,通过多媒体辅助教学,学生比较容易掌握本节课的内容。

  五、教学过程分析

  1、创设情景:我首先向学生们展示章头图,介绍图中的后景是取自宋朝数学家朱世杰的数学作品《四元玉鉴》,告诉学生们章头图正是体现了中国古代数学与现代计算机科学的联系,它们的基础都是"算法"

  2、引入新课:在这一环节我首先和学生们一起回顾如何解二元一次方程组,并引导他们归纳二元一次方程组的求解步骤,从而让学生经历算法分析的基本过程,培养思维的条理性,引导学生关注更具一般性解法,形成解法向算法过渡的准备,为建立算法概念打下基础。紧接着在此基础上进一步复习回顾解一般的二元一次方程组的步骤,引导学生分析解题过程的结构,写出求一般的二元一次方程组的解的算法,并把它编成程序,让学生输入数据,体验计算机直接给出方程组的解。目的是让学生明白算法是用来解决某一类问题的,从而提高学生对算法的普遍适用性的认识,为建立算法的`概念做好铺垫。

  之后,我就向学生们提出问题:到底什么是算法?如何用语言来表达算法的涵义?这里让学生们根据刚刚的探索交流、思考并回答,然后老师进行归纳,得出算法的基本概念,并帮助学生认识算法的概念,指出有穷性,确定性,可行性。这样可以让学生们真正参与到算法概念的形成过程中来,体会算法思想。(约8分钟)

  3、例题讲解:在这一环节我安排了两道例题,以帮助学生们能更好地理解算法的基本概念,并应用到实际解决问题中去,而不只是单纯的对数学思想的领悟。

  4、课堂小结:

  (1)算法的概念和算法的基本特征

  (2)算法的描述方法,算法可以用自然语言描述。

  (3)能利用算法的思想和方法解决实际问题,并能写出一此简单问题的算法课堂小结是一堂课内容的概括和总结,有利于学生把握本节课的重点,对所学知识有一个系统整体的认识。(约6分钟)

  5、布置作业:课本练习1、2题

  课后作业的布置是为了检验学生对本节课内容的理解和运用程度以及实际接受情况,并促使学生进一步巩固和掌握所学内容。对作业实施分层设置,分必做和选做,利于拓展学生的自主发展的空间。

【高中数学一等奖说课稿】相关文章:

高中数学说课比赛一等奖说课稿(通用17篇)01-06

高中数学经典说课稿11-25

高中数学的说课稿04-19

高中数学向量说课稿09-09

高中数学《数列》说课稿01-18

高中数学说课稿06-12

高中数学说课稿06-13

高中数学说课稿12-12

高中数学数列说课稿11-20