高中数学数列说课稿

时间:2022-11-20 19:21:38 高中说课稿 我要投稿

高中数学数列说课稿(5篇)

  作为一位杰出的老师,总不可避免地需要编写说课稿,说课稿有利于教学水平的提高,有助于教研活动的开展。优秀的说课稿都具备一些什么特点呢?下面是小编帮大家整理的高中数学数列说课稿,欢迎大家分享。

高中数学数列说课稿(5篇)

高中数学数列说课稿1

  一、地位作用

  数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养学生的观察、分析、归纳、猜想及综合解决问题的能力。

  基于此,设计本节的数学思路上:

  利用类比的思想,联系等差数列的概念及通项公式的学习方法,采取自学、引导、归纳、猜想、类比总结的教学思路,充分发挥学生主观能动性,调动学生的主体地位,充分体现教为主导、学为主体、练为主线的教学思想。

  二、教学目标

  知识目标:1)理解等比数列的概念

  2)掌握等比数列的通项公式

  3)并能用公式解决一些实际问题

  能力目标:培养学生观察能力及发现意识,培养学生运用类比思想、解决分析问题的能力。

  三、教学重点

  1)等比数列概念的理解与掌握 关键:是让学生理解“等比”的特点

  2)等比数列的通项公式的推导及应用

  四、教学难点

  “等比”的理解及利用通项公式解决一些问题。

  五、教学过程设计

  (一)预习自学环节。(8分钟)

  首先让学生重新阅读课本105页国际象棋发明者的故事,并出示预习提纲,要求学生阅读课本P122至P123例1上面。

  回答下列问题

  1)课本中前3个实例有什么特点?能否举出其它例子,并给出等比数列的定义。

  2)观察以下几个数列,回答下面问题:

  1, , , ,……

  -1,-2,-4,-8……

  1,2,-4,8……

  -1,-1,-1,-1,……

  1,0,1,0……

  ①有哪几个是等比数列?若是公比是什么?

  ②公比q为什么不能等于零?首项能为零吗?

  ③公比q=1时是什么数列?

  ④q>0时数列递增吗?q<0时递减吗?

  3)怎样推导等比数列通项公式?课本中采取了什么方法?还可以怎样推导?

  4)等比数列通项公式与函数关系怎样?

  (二)归纳主导与总结环节(15分钟)

  这一环节主要是通过学生回答为主体,教师引导总结为主线解决本节两个重点内容。

  通过回答问题(1)(2)给出等比数列的定义并强调以下几点:①定义关键字“第二项起”“常数”;

  ②引导学生用数学语言表达定义: =q(n≥2);③q=1时为非零常数数列,既是等差数列又是等比数列。引申:若数列公比为字母,分q=1和q≠1两种情况;引入分类讨论的思想。

  ④q>0时等比数列单调性不定,q<0为摆动数列,类比等差数列d>0为递增数列,d<0为递减数列。

  通过回答问题(3)回忆等差数列的推导方法,比较两个数列定义的不同,引导推出等比数列通项公式。

  法一:归纳法,学会从特殊到一般的方法,并从次数中发现规律,培养观察力。

  法二:迭乘法,联系等差数列“迭加法”,培养学生类比能力及新旧知识转化能力。

高中数学数列说课稿2

  一、教材分析

  1.从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养.

  2.从学生认知角度看

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导.不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错.

  3.学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨.

  4.重点、难点

  教学重点:公式的推导、公式的特点和公式的运用.

  教学难点:公式的推导方法和公式的灵活运用.

  公式推导所使用的“错位相减法”是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点.

  二、目标分析

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础

  上能初步应用公式解决与之有关的问题.

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

  化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之

  间等价转化和理论联系实际的辩证唯物主义观点.

  三、过程分析

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1.创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求.西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格.国王令宫廷数学家计算,结果出来后,国王大吃一惊.为什么呢?

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数.带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.

  2.师生互动,探究问题

  在肯定他们的思路后,我接着问:1,2,22,…,263是什么数列?有何特征?应归结为什么数学问题呢?

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式.比较(1)(2)两式,你有什么发现?

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.

  3.类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.

  对不对?这里的q能不能等于1?等比数列中的公比能不能为

  1q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.)

  再次追问:结合等比数列的通项公式an=a1qn-1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.

  4.讨论交流,延伸拓展

高中数学数列说课稿3

  一、教材分析

  1、从在教材中的地位与作用来看

  《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的类比、化归、分类讨论、整体变换和方程等思想方法,都是学生今后学习和工作中必备的数学素养。

  2、从学生认知角度看

  从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的形成、特点等方面进行类比,这是积极因素,应因势利导。不利因素是:本节公式的推导与等差数列前n项和公式的推导有着本质的不同,这对学生的思维是一个突破,另外,对于q=1这一特殊情况,学生往往容易忽视,尤其是在后面使用的过程中容易出错。

  3、学情分析

  教学对象是刚进入高中的学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃、敏捷,却缺乏冷静、深刻,因此片面、不严谨。

  4、重点、难点

  教学重点:公式的推导、公式的特点和公式的运用。

  教学难点:公式的推导方法和公式的灵活运用。

  公式推导所使用的"错位相减法"是高中数学数列求和方法中最常用的方法之一,它蕴含了重要的数学思想,所以既是重点也是难点。

  二、目标分析

  知识与技能目标:

  理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题。

  过程与方法目标:

  通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转

  化、分类讨论等数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力。

  情感与态度价值观:

  通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点。

  三、过程分析

  学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下的教学过程:

  1、创设情境,提出问题

  在古印度,有个名叫西萨的人,发明了国际象棋,当时的印度国王大为赞赏,对他说:我可以满足你的任何要求。西萨说:请给我棋盘的64个方格上,第一格放1粒小麦,第二格放2粒,第三格放4粒,往后每一格都是前一格的两倍,直至第64格。国王令宫廷数学家计算,结果出来后,国王大吃一惊。为什么呢?

  设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性。故事内容紧扣本节课的主题与重点。

  此时我问:同学们,你们知道西萨要的是多少粒小麦吗?引导学生写出麦粒总数。带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和。这时我对他们的这种思路给予肯定。

  设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的"无用功",急急忙忙地抛出"错位相减法",这样做有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍。同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔、

  2、师生互动,探究问题

  在肯定他们的思路后,我接着问:1,2,22,.....,263是什么数列?有何特征?应归结为什么数学问题呢?

  探讨1:,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)

  探讨2:如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,记为(2)式。比较(1)(2)两式,你有什么发现?

  设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变"加"为"减",在教师看来这是"天经地义"的,但在学生看来却是"不可思议"的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机。

  经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:。老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?

  设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心。

  3、类比联想,解决问题

  这时我再顺势引导学生将结论一般化,

  这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导。

  设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感。

  对不对?这里的q能不能等于1?等比数列中的公比能不能为1?q=1时是什么数列?此时sn=?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础。)

  再次追问:结合等比数列的通项公式an=a1qn—1,如何把sn用a1、an、q表示出来?(引导学生得出公式的另一形式)

  设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力。这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用。

  4、讨论交流,延伸拓展

  在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗?我们知道,

  那么我们能否利用这个关系而求出sn呢?根据等比数列的定义又有,能否联想到等比定理从而求出sn呢?

  设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围、以上两种方法都可以化归到,这其实就是关于的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用、

  5、变式训练,深化认识

  首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结。

  设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成。通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识。

  6、例题讲解,形成技能

  设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想。

  7、总结归纳,加深理解

  以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结。

  设计意图:以此培养学生的口头表达能力,归纳概括能力。

  8、故事结束,首尾呼应

  最后我们回到故事中的问题,我们可以计算出国王奖赏的小麦约为1、84×1019粒,大约7000亿吨,用这么多小麦能从地球到太阳铺设一条宽10米、厚8米的大道,大约是全世界一年粮食产量的459倍,显然国王兑现不了他的承诺。

  设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维。

  9、课后作业,分层练习

  必做:P129练习1、2、3、4

  选作:

  (2)"远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?"这首中国古诗的答案是多少?

  设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间。

  四、教法分析

  对公式的教学,要使学生掌握与理解公式的来龙去脉,掌握公式的推导方法,理解公式的成立条件,充分体现公式之间的联系。在教学中,我采用"问题――探究"的教学模式,把整个课堂分为呈现问题、探索规律、总结规律、应用规律四个阶段。

  利用多媒体辅助教学,直观地反映了教学内容,使学生思维活动得以充分展开,从而优化了教学过程,大大提高了课堂教学效率。

  五、评价分析

  本节课通过三种推导方法的研究,使学生从不同的思维角度掌握了等比数列前n项和公式。错位相减:变加为减,等价转化;递推思想:纵横联系,揭示本质;等比定理:回归定义,自然朴实。学生从中深刻地领会到推导过程中所蕴含的数学思想,培养了学生思维的深刻性、敏锐性、广阔性、批判性。同时通过精讲一题,发散一串的变式教学,使学生既巩固了知识,又形成了技能。在此基础上,通过民主和谐的课堂氛围,培养了学生自主学习、合作交流的学习习惯,也培养了学生勇于探索、不断创新的思维品质。

高中数学数列说课稿4

  本节课讲述的是人教版高一数学(上)§3.2等差数列(第一课时)的内容。

  一、教材分析

  1、教材的地位和作用:

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  2、教学目标

  根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

  a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

  b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

  c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

  3、教学重点和难点

  根据教学大纲的要求我确定本节课的教学重点为:

  ①等差数列的概念。

  ②等差数列的通项公式的推导过程及应用。

  由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

  二、学情教法分析:

  对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

  针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

  三、学法指导:

  在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

  四、教学程序

  本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

  (一)复习引入:

  1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______。(N﹡;解析式)

  通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

  2.小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为:100,98,96,94,92 ①

  3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为5,10,15,20,25 ②

  通过练习2和3引出两个具体的等差数列,初步认识等差数列的`特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

  (二) 新课探究

  1、由引入自然的给出等差数列的概念:

  如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,

  这个常数叫做等差数列的公差,通常用字母d来表示。强调:

  ① “从第二项起”满足条件;

  ②公差d一定是由后项减前项所得;

  ③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

  在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

  an+1-an=d (n≥1)同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

  1. 9 ,8,7,6,5,4,……;√ d=-1

  2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一个数列公差<0,>0,第三个数列公差=0

  由此强调:公差可以是正数、负数,也可以是0

  2、第二个重点部分为等差数列的通项公式

  在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

  若一等差数列{an }的首项是a1,公差是d,则据其定义可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d,进而归纳出等差数列的通项公式:

  an=a1+(n-1)d

  此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an – an-1=d

  将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)

  当n=1时,(1)也成立,

  所以对一切n∈N﹡,上面的公式都成立

  因此它就是等差数列{an}的通项公式。

  在迭加法的证明过程中,我采用启发式教学方法。

  利用等差数列概念启发学生写出n-1个等式。

  对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。

  在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求

  接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 ,

  即an=2n-1 以此来巩固等差数列通项公式运用

  同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。

  (三)应用举例

  这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。

  例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项

  (2)-401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

  在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an.

  例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。

  在前面例1的基础上将例2当作练习作为对通项公式的巩固

  例3 是一个实际建模问题

  建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?

  这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)。

  设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法

  (四)反馈练习

  1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。

  2、书上例3)梯子的一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。

  目的:对学生加强建模思想训练。

  3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列

  此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。

  (五)归纳小结(由学生总结这节课的收获)

  1.等差数列的概念及数学表达式.

  强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

  2.等差数列的通项公式 an= a1+(n-1) d会知三求一

  3.用“数学建模”思想方法解决实际问题

  (六)布置作业

  必做题:课本P114 习题3.2第2,6 题

  选做题:已知等差数列{an}的首项a1=-24,从第10项开始为正数,求公差d的取值范围。

  (目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)

  五、板书设计

  在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。

高中数学数列说课稿5

  以下是高中数学《等差数列前n项和的公式》说课稿,仅供参考。

  教学目标

  A、知识目标:

  掌握等差数列前n项和公式的推导方法;掌握公式的运用。

  B、能力目标:

  (1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

  (2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

  (3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

  C、情感目标:(数学文化价值)

  (1)公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

  (2)通过公式的运用,树立学生"大众教学"的思想意识。

  (3)通过生动具体的现实问题,令人着迷的数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

  教学重点:等差数列前n项和的公式。

  教学难点:等差数列前n项和的公式的灵活运用。

  教学方法:启发、讨论、引导式。

  教具:现代教育多媒体技术。

  教学过程

  一、创设情景,导入新课。

  师:上几节,我们已经掌握了等差数列的概念、通项公式及其有关性质,今天要进一步研究等差数列的前n项和公式。提起数列求和,我们自然会想到德国伟大的数学家高斯"神速求和"的故事,小高斯上小学四年级时,一次教师布置了一道数学习题:"把从1到100的自然数加起来,和是多少?"年仅10岁的小高斯略一思索就得到答案5050,这使教师非常吃惊,那么高斯是采用了什么方法来巧妙地计算出来的呢?如果大家也懂得那样巧妙计算,那你们就是二十世纪末的新高斯。(教师观察学生的表情反映,然后将此问题缩小十倍)。我们来看这样一道一例题。

  例1,计算:1+2+3+4+5+6+7+8+9+10.

  这道题除了累加计算以外,还有没有其他有趣的解法呢?小组讨论后,让学生自行发言解答。

  生1:因为1+10=2+9=3+8=4+7=5+6,所以可凑成5个11,得到55。

  生2:可设S=1+2+3+4+5+6+7+8+9+10,根据加法交换律,又可写成 S=10+9+8+7+6+5+4+3+2+1。

  上面两式相加得2S=11+10+......+11=10×11=110

  10个

  所以我们得到S=55,

  即1+2+3+4+5+6+7+8+9+10=55

  师:高斯神速计算出1到100所有自然数的各的方法,和上述两位同学的方法相类似。

  理由是:1+100=2+99=3+98=......=50+51=101,有50个101,所以1+2+3+......+100=50×101=5050。请同学们想一下,上面的方法用到等差数列的哪一个性质呢?

  生3:数列{an}是等差数列,若m+n=p+q,则am+an=ap+aq.

  二、教授新课(尝试推导)

  师:如果已知等差数列的首项a1,项数为n,第n项an,根据等差数列的性质,如何来导出它的前n项和Sn计算公式呢?根据上面的例子同学们自己完成推导,并请一位学生板演。

  生4:Sn=a1+a2+......an-1+an也可写成

  Sn=an+an-1+......a2+a1

  两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)

  n个

  =n(a1+an)

  所以Sn=

  #FormatImgID_0#

  (I)

  师:好!如果已知等差数列的首项为a1,公差为d,项数为n,则an=a1+(n-1)d代入公式(1)得

  Sn=na1+

  #FormatImgID_1#

  d(II) 上面(I)、(II)两个式子称为等差数列的前n项和公式。公式(I)是基本的,我们可以发现,它可与梯形面积公式(上底+下底)×高÷2相类比,这里的上底是等差数列的首项a1,下底是第n项an,高是项数n。引导学生总结:这些公式中出现了几个量?(a1,d,n,an,Sn),它们由哪几个关系联系?[an=a1+(n-1)d,Sn=

  #FormatImgID_2#

  =na1+

  #FormatImgID_3#

  d];这些量中有几个可自由变化?(三个)从而了解到:只要知道其中任意三个就可以求另外两个了。下面我们举例说明公式(I)和(II)的一些应用。

  三、公式的应用(通过实例演练,形成技能)。

  1、直接代公式(让学生迅速熟悉公式,即用基本量观点认识公式)例2、计算:

  (1)1+2+3+......+n

  (2)1+3+5+......+(2n-1)

  (3)2+4+6+......+2n

  (4)1-2+3-4+5-6+......+(2n-1)-2n

  请同学们先完成(1)-(3),并请一位同学回答。

  生5:直接利用等差数列求和公式(I),得

  (1)1+2+3+......+n=

  #FormatImgID_4#

  (2)1+3+5+......+(2n-1)=

  #FormatImgID_5#

  (3)2+4+6+......+2n=

  #FormatImgID_6#

  =n(n+1)

  师:第(4)小题数列共有几项?是否为等差数列?能否直接运用Sn公式求解?若不能,那应如何解答?小组讨论后,让学生发言解答。

  生6:(4)中的数列共有2n项,不是等差数列,但把正项和负项分开,可看成两个等差数列,所以

  原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)

  =n2-n(n+1)=-n

  生7:上题虽然不是等差数列,但有一个规律,两项结合都为-1,故可得另一解法:

  原式=-1-1-......-1=-n

  n个

  师:很好!在解题时我们应仔细观察,寻找规律,往往会寻找到好的方法。注意在运用Sn公式时,要看清等差数列的项数,否则会引起错解。

  例3、(1)数列{an}是公差d=-2的等差数列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。

  生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4

  又∵d=-2,∴a1=6

  ∴S12=12 a1+66×(-2)=-60

  生9:(2)由a1+a2+a3=12,a1+d=4

  a8+a9+a10=75,a1+8d=25

  解得a1=1,d=3 ∴S10=10a1+

  #FormatImgID_7#

  =145

  师:通过上面例题我们掌握了等差数列前n项和的公式。在Sn公式有5个变量。已知三个变量,可利用构造方程或方程组求另外两个变量(知三求二),请同学们根据例3自己编题,作为本节的课外练习题,以便下节课交流。

  师:(继续引导学生,将第(2)小题改编)

  ①数列{an}等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n

  ②若此题不求a1,d而只求S10时,是否一定非来求得a1,d不可呢?引导学生运用等差数列性质,用整体思想考虑求a1+a10的值。

  2、用整体观点认识Sn公式。

  例4,在等差数列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教师启发学生解)

  师:来看第(1)小题,写出的计算公式S16=

  #FormatImgID_8#

  =8(a1+a6)与已知相比较,你发现了什么?

  生10:根据等差数列的性质,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。

  师:对!(简单小结)这个题目根据已知等式是不能直接求出a1,a16和d的,但由等差数列的性质可求a1与an的和,于是这个问题就得到解决。这是整体思想在解数学问题的体现。

  师:由于时间关系,我们对等差数列前n项和公式Sn的运用一一剖析,引导学生观察当d≠0时,Sn是n的二次函数,那么从二次(或一次)的函数的观点如何来认识Sn公式后,这留给同学们课外继续思考。

  最后请大家课外思考Sn公式(1)的逆命题:

  已知数列{an}的前n项和为Sn,若对于所有自然数n,都有Sn=

  #FormatImgID_9#

  。数列{an}是否为等差数列,并说明理由。

  四、小结与作业。

  师:接下来请同学们一起来小结本节课所讲的内容。

  生11:1、用倒序相加法推导等差数列前n项和公式。

  2、用所推导的两个公式解决有关例题,熟悉对Sn公式的运用。

  生12:1、运用Sn公式要注意此等差数列的项数n的值。

  2、具体用Sn公式时,要根据已知灵活选择公式(I)或(II),掌握知三求二的解题通法。

  3、当已知条件不足以求此项a1和公差d时,要认真观察,灵活应用等差数列的有关性质,看能否用整体思想的方法求a1+an的值。

  师:通过以上几例,说明在解题中灵活应用所学性质,要纠正那种不明理由盲目套用公式的学习方法。同时希望大家在学习中做一个有心人,去发现更多的性质,主动积极地去学习。

  本节所渗透的数学方法;观察、尝试、分析、归纳、类比、特定系数等。

  数学思想:类比思想、整体思想、方程思想、函数思想等。

【高中数学数列说课稿】相关文章:

高中数学数列说课稿11-20

苏教版高中数学数列说课稿11-25

高中数学数列说课稿详解12-31

高中数学数列说课稿范文03-13

数列高中数学说课稿范文12-04

高中数学数列说课稿5篇11-20

高中数学《等差数列》说课稿09-06

高中数学等比数列说课稿04-08

高中数学说课稿:等差数列11-25

高中数学说课稿《等比数列》07-25