小学四年级数学《三角形内角和》说课稿
作为一名无私奉献的老师,通常需要准备好一份说课稿,是说课取得成功的前提。那么大家知道正规的说课稿是怎么写的吗?以下是小编收集整理的小学四年级数学《三角形内角和》说课稿,仅供参考,大家一起来看看吧。
小学四年级数学《三角形内角和》说课稿1
各位老师:
下午好!
今天我们相聚在云周小学,共同行走在“生本”课堂的道路上。作为一名新教师,我也是抱着一种学习的心态来评课。应老师的这节《三角形内角和》,无论是他的设计,还是他对课的演绎,都充分体现了“以生为本”的理念。
这节课有以下几点值得我们去探讨:
一、学生的起点在哪里?
既然是生本课堂,那我们在备课之前,就要做到备学生,找起点。新课导入时,应老师花了一些时间复习三角形的分类和平角的知识,充分唤醒学生对三角形的认知,分类是为了抓住三角形的本质,缩小验证时选材的范围,而三个角拼成一个平角的练习,则为学生之后的验证搭好一个脚手架,降低他们学习的难度。但从课堂上来看,部分学生已经知道三角形内角和是180°,而且当出示平角那道题时,学生立刻说出180°是三角形内角和,而没有想到平角,这需要我们来反思这个环节的必要性。为什么学生会联想到内角和呢?我想可能是应老师在此之前询问了:“三角形有几个角?如果告诉你两个角,会求第三个角吗?”同样是为了复习,却产生了负迁移,反而没有达成预定的效果。再此之后又介绍“内角”等概念,这样难免有回课嫌疑。课堂选材要有取舍,我觉得这个环节可以删除。
二、既然量正确了,为什么还要拼?
有位老师说过:“数学老师和语文老师就是不一样,语文老师会发散,将一句简单的话复杂化;而数学老师会收敛,将复杂的例题、方法融汇成一句话。”所以数学课上必须让学生亲身经历知识的发展过程。在探究过程中,应老师放手让学生想方法验证猜想,学生首先会想到量出内角并相加,从反馈来看,学生量得的结果都是180°,既然得到想要的结果了,再拼不是多此一举了吗?课堂上应老师也对学生的精确结果赶到意外,究竟量角的误差在哪里?
学生的心里总是不敢犯错的,这就会让很多数据失真。其实误差不仅仅只是存在于内角总和,还存在于每个内角的度数。课堂反馈上,对于同样的锐角,学生量出了“60°,40°,80°和55°,45°,80°”同样一个三角形,为什么内角度数会有所不同,此时通过对比,让学生明白量角时有误差,容易改变角度,看来量不是最准确的方法,而撕角拼角则不会改变它的大小。我想这就是我们为什么将力气花在剪拼法上了。
三、如何凸显内角和的本质?
通过各种方法的验证,我们知道了三角形的内角和是180°,难道点到即止吗?应老师巧妙借助几何画板,改变三角形的形状和大小,并引导学生观察什么变了,什么不变?这一简单的演示却寓意深远,无论形状大小如何改变,三角形内角和永远是180°,这也从另一个角度说明了三角形为什么具有稳定性,只要确定两个角,第三个角永远的唯一的。结论只是静态的文字,而课件是动态的演示,这种动静结合的美渲染了我们的眼球,同时也凸显了内角和的本质,让结论更具说服力。
四、练习设计的创新点在哪里?
练习是一节课的精髓,这节课的练习主要分三层,一算二辨三延伸。应老师在练习的设计上很注重一材多用,而且非常有坡度性,这也是本节课最大的亮点。在“只知道一个角”的环节中,应老师设计了只露出一个70°角的等腰三角形,求另两个角。大多数学生只想到一种情况后,便沾沾自喜,不会更深入思考问题,因为在学生潜意识中总认为正确答案只有一个。这也给了我们一个启示,关注答案,更要关注学生解题的意识,引导学生从多维角度思考问题。
这里我有一个的想法,这个想法也来源于作业本的习题。能不能把70°角改成40°,当学生算出答案后,询问学生,如果按角分,这是一个什么三角形?沟通按角分和按边分三角形的横向联系,在练习中温故而知新。再设计已知一个角是140°的等腰三角形的练习,打破学生的思维定势,并不是所有等腰三角形都有两种可能。之后再询问:“一个角都不知道,如何求内角。”让练习更具层次性。
应老师这节课还有很多值得我们学习的地方,比如应老师自如的教态、亲切的语言让学生倍感温暖;精心准备的教具让课堂不再沉闷;精彩的练习让知识落到实处。以上是我对这节课一些不成熟的想法,希望各位老师给予批评和指正。
小学四年级数学《三角形内角和》说课稿2
一,说教材
(一)教材的地位和作用
《三角形内角和》一课是人教版义务教育课程标准实验教材四年级下册第五单元的内容,是在学生学习了《三角形的特性》以及《三角形三边关系》,《三角形的分类》之后进行的,在此之后则是《图形的拼组》,它是三角形的一个重要特征,也是掌握多边形内角和及解决其他实际问题的基础,因此,学习,掌握三角形的内角和是180°这一规律具有重要意义。
(二)教学目标
基于以上对教材的分析以及对教学现状的思考,我从知识与技能,教学过程与方法,情感态度价值观三方面拟定了本节课的教学目标:
1。通过量一量;算一算;拼一拼折一折的小组活动的方法,探索发现验证三角形内角和等于180°,并能应用这一知识解决一些简单问题。
2。通过把三角形的内角和转化为平角进行探究实验,渗透转化;的数学思想。
3。通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识,探索精神和实践能力。
(三)教学重,难点
因为学生已经掌握了三角形的概念,分类,熟悉了钝角,锐角,平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是180°。在整个过程中学生要了解的是内角的概念,如何验证得出三角形的内角和是180°。因此本节课我提出的教学的重点是:验证三角形的内角和是180°。
二,说教法,学法
本节课主要是通过教师的精心引导和点拨,学生在小组中合作探索,通过量一量,折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内角和是180°。
因为《课程标准》明确指出要结合有关内容的教学,引导学生进行观察,操作,猜想,培养学生初步的思维能力。四年级学生经过第一学段以及本单元的学习,已经掌握了三角形的分类,比较熟悉平角等有关知识;具备了初步的动手操作,主动探究的能力,他们正处于由形象思维向抽象思维过渡的阶段。因此,本节课,我将重点引导学生从猜测――验证展开学习活动,让学生感受这种重要的数学思维方式。
三,说教学过程
我以引入,猜测,证实,深化和应用五个活动环节为主线,让学生通过自主探究学习进行数学的思考过程,积累数学活动经验。
引入
呈现情境:出示多个已学的平面图形,让学生认识什么是内角;。( 把图形中相邻两边的夹角称为内角) 长方形有几个内角 (四个)它的内角有什么特点 (都是直角)这四个内角的和是多少 (360°)三角形有几个内角呢 从而引入课题。
【设计意图】让学生整体感知三角形内角和的知识,这样的教学, 将三角形内角和置于平面图形内角和的大背景中, 拓展了三角形内角和的数学知识背景, 渗透数学知识之间的联系, 有效地避免了新知识的横空出现
猜测
提出问题:长方形内角和是360°,那么三角形内角和是多少呢
【设计意图】引导学生提出合理猜测:三角形的内角和是180°。
(三)验证
(1)量:请学生每人画一个自己喜欢的三角形,接着用量角器量一量,然后把这三个内角的度数加起来算一算,看看得出的三角形的内角和是多少度
(2)撕―拼:利用平角是180°这一特点,启发学生能否也把三角形的三个内角撕下来拼在一起,成为一个平角 请学生同桌合作,从学具中选出一个三角形,撕下来拼一拼。
(3)折—拼:把三角形的'三个内角都向内折,把这三个内角拼组成一个平角,一个平角是180°,所以得出三角形的内角和是180°。
(4)画:根据长方形的内角和来验证三角形内角和是180°。
一个长方形有4个直角,每个直角90°,那么长方形的内角和就是360°,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180°。从长方形的内角和联想到直角三角形的内角和是180°。
【设计意图】利用已经学过的知识构建新的数学知识, 这不仅有助于学生理解新的知识, 而且是一种非常重要的学习方法。在探索三角形内角和规律的教学中,注意引导学生将三角形内角和与平角,长方形四个内角的和等知识联系
起来, 并使学生在新旧知识的连接点和新知识的生长点上把握好他们之间的内在联系。在整个探索过程中学生积极思考并大胆发言, 他们的创造性思维得到了充分发挥。
深化
质疑: 大小不同的三角形, 它们的内角和会是一样吗
观察指着黑板上两个大小不同但三个角对应相等的三角形并说明原因,三角形变大了, 但角的大小没有变。)
结论: 角的两条边长了, 但角的大小不变。因为角的大小与边的长短无关。
实验: 教师先在黑板上固定小棒, 然后用活动角与小棒组成一个三角形, 教师手拿活动角的顶点处, 往下压, 形成一个新的三角形, 活动角在变大, 而另外两个角在变小。这样多次变化, 活动角越来越大, 而另外两个角越来越小。最后, 当活动角的两条边与小棒重合时。
结论:活动角就是一个平角180°, 另外两个角都是0°。
【设计意图】小学生由于年龄小, 容易受图形或物体的外在形式的影响。教师主要是引导学生与角的有关知识联系起来,通过让学生观察利用角的大小与边的长短无关的旧知识来理解说明。
对于利用精巧的小教具的演示, 让学生通过观察,交流,想象, 充分感受三角形三个角之间的联系和变化, 感悟三角形内角和不变的原因。
(五)应用
1。基础练习:书本练习十四的习题9,求出三角形各个角的度数。
2。变式练习:一个三角形可能有两个直角吗 一个三角形可能有两个钝角吗 你能用今天所学的知识说明吗3。(1)将两个完全一样的直角三角形拼成一个大三角形, 这个大三角形的内角和是多少
(2) 将一个大三角形分成两个小三角形, 这两个小三角形的内角和分别是多少
4。智力大挑战: 你能求出下面图形的内角和吗 书本练习十四的习题
【设计意图】习题是沟通知识联系的有效手段。在本节课的四个层次的练习中, 能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。能充分注意沟通知识之间的内在联系, 使学生从整体上把握知识的来龙去脉和纵横联系,逐步形成对知识的整体认知, 构建自己的认知结构, 从而发展思维, 提高综合运用知识解决问题的能力。
第一题将三角形内角和知识与三角形特征结合起来,引导学生综合运用内角和知识和直角三角形,等边三角形等图形特征求三角形内角的度数。
第二题将三角形内角和知识与三角形的分类知识结合起来,引导学生运用三角形内角和的知识去解释直角三角形,钝角三角形中角的特征, 较好地沟通了知识之间的联系。
第三题通过两个三角形的分与合的过程,使学生感受此过程中三角内角的 变化情况, 进一步理解三角形内角和的知识。
第四题是对三角形内角和知识的进一步拓展, 引导学生进一步研究多边形的内角和。教学中, 学生能把这些多边形分成几个三角形, 将多边形内角和与三角形内角和联系起来,并逐步发现多边形内角和的规律, 以此促进学生对多边形内角和知识的整体构建。
【小学四年级数学《三角形内角和》说课稿】相关文章:
小学数学四年级《三角形内角和》说课稿08-18
三角形内角和教学设计08-14
小学四年级数学《小数加法和减法》说课稿08-18
小学数学说课稿《小数的意义和性质》11-26
初中数学《相似三角形》说课稿范文12-10
小学数学说课稿01-03
《小学数学乘法》说课稿08-14
初中数学《三角形外角和》教学反思09-15
小学数学《长方体和正方体体积》说课稿08-18
初中数学《正数和负数》优秀说课稿06-12