高中数学学习方法

时间:2022-11-14 09:10:45 学习方法 我要投稿

高中数学学习方法(集合15篇)

  在平日的学习、工作和生活里,大家都需要每天学习,吸收有用的知识。不过,学习不是死读书,而要讲究方法的。那么,都有哪些实用的学习方法呢?下面是小编精心整理的高中数学学习方法,欢迎大家分享。

高中数学学习方法(集合15篇)

高中数学学习方法1

  一、认清学习能力状态

  1 、心理素质。由于学生在初中特定环境下所具有的荣誉感与成功感能否带到高中学习,这就要看他(或她)是否具备面对挫折、冷静分析问题、找出克服困难走出困境的办法。会学习的学生因学习得法而成绩好,成绩好又可以激发兴趣,增强信心,更加想学,知识与能力进一步发展形成了良性循环,不会学习的学生开始学习不得法而成绩不好,如能及时总结教训,改变学法,变不会学习为会学习,经过一番努力还是可以赶上去的,如果任其发展,不思改进,不作努力,缺乏毅力与信心,成绩就会越来越差,能力越得不到发展,形成恶性循环。因此高中学习是对学生心理素质的考验。

  2 、学习方式、习惯的反思与认识

  (1)学习的主动性。许多同学进入高中后还象初中那样有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动性,表现在不订计划,坐等上课,课前不作预习,对老师要上课的内容不了解,上课忙于记笔记,忽略了真正听课的任务,顾此失彼,被动学习。

  (2)学习的条理性。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  (3)忽视基础。有些"自我感觉良好"的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的"水平",好高骛远,重"量"轻"质",陷入题海,到正规作业或考试中不是演算出错就是中途"卡壳" 。

  (4)学生在练习、作业上的不良习惯。主要有对答案、不相信自己的结论,缺乏对问题解决的信心和决心;讨论问题不独立思考,养成一种依赖心理素质;慢腾腾作业,不讲速度,训练不出思维的敏捷性;心思不集中,作业、练习效率不高。

  3 、知识的衔接能力。

  初中数学教材内容通俗具体,多为常量,题型少而简单;而高中数学内容抽象,多研究变量、字母,不仅注重计算,而且还注重理论分析,这与初中相比增加了难度。另一方面,高中数学与初中相比,知识的深度、广度和能力的要求都是一次质的飞跃,这就要求学生必须掌握基础知识与技能为进一步学习作好准备。由于初中教材知识起点低,对学生能力的要求亦低,由于近几年教材内容的调整,虽然初高中教材都降低了难度,但相比之下,初中降低的幅度大,有的内容为应付中考而不讲或讲得较浅(如二次函数及其应用),这部分内容不列入高中教材但需要经常提到或应用它来解决其它数学问题,而高中由于受高考的限制,教师都不敢降低难度,造成了高中数学实际难度没有降低。因此,从一定意义上讲,调整后的教材不仅没有缩小初高中教材内容的难度差距,反而加大了。如不采取补救措施,查缺补漏,学生的成绩的分化是不可避免的。这涉及到初高中知识、能力的衔接问题。

  二、努力提高自己的能力

  1 、改进学法、培养良好的学习习惯。

  不同学习能力的学生有不同的学法,应尽量学习比较成功的同学的学习方法。改进学法是一个长期性的系统积累过程,一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。

  在课堂教学中培养听课习惯。听是主要的,听能使注意力集中,把老师讲的关键性部分听懂、听会,听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地笔记,领会课上老师的主要精神与意图,五官能协调活动是最好的习惯。在课堂、课外练习中培养作业习惯,在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力,必须独立完成。可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,疲疲惫惫的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的,抓数学学习习惯必须从高一年级抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的指导。

  2 、加强45分钟课堂效益。

  要提高数学能力,当然是通过课堂来提高,要充分利用好这块阵地。

  (1)抓教材处理。学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。

  (2)抓知识形成。数学的一个概念、定义、公式、法则、定理等都是数学的基础知识,这些知识的形成过程容易被忽视。事实上,这些知识的形成过程正是数学能力的培养过程。一个定理的证明,往往是新知识的发现过程,在掌握知识的过程中,就培养了数学能力的发展。因此,要改变重结论轻过程的教学方法,要把知识形成过程看作是数学能力培养的过程。

  (3)抓学习节奏。数学课没有一定的速度是无效学习,慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

  (4)抓问题暴露。在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是现开销的,对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,现开销的问题及时抓,遗留问题有针对性地补,注重实效。

  (5)抓课堂练习、抓好练习课、复习课、测试分析课的教学。数学课的课堂练习时间每节课大约占1 / 4 — 1 / 3,有时超过1 / 3,这是对数学知识记忆、理解、掌握的重要手段,坚持不懈,这既是一种速度训练,又是能力的检测。学生做题是无心的,而教师所寻找的例题是有心的,哪些知识需要补救、巩固、提高,哪些知识、能力需要培养、加强应用。上课应有针对性。

  (6)抓解题指导。要合理选择简捷运算途径,这不仅是迅速运算的需要,也是运算准确性的需要,运算的步骤越多,繁度就越大,出错的可能性就会增大。因而根据问题的条件和要求合理地选择简捷的运算途径不但是提高运算能力的关键,也是提高其它数学能力的有效途径。

  (7)抓数学思维方法的训练。数学学科担负着培养运算能力、逻辑思维能力、空间想象力以及运用所学知识分析问题、解决问题的重任,它的特点是具有高度的抽象性、逻辑性与广泛的适用性,对能力的要求较高。数学能力只有在数学思想方法不断地运用中才能培养和提高。

  3、体验成功,发展学习兴趣

  "兴趣是最好的老师",而学习兴趣总是和成功的喜悦紧密相连的。如听懂一节课,掌握一种数学方法,解出一道数学难题,测验得到好成绩,平时老师对自己的鼓励与赞赏等,都能使自己从这些"成功"中体验到成功的喜悦,激发起更高的学习热情。因此,在平时学习中,要多体会、多总结,不断从成功(那怕是微不足道的成绩)中获得愉悦,从而激发学习的热情,提高学习的兴趣。

  三、几点注意。

  1、提高学生数学能力的过程是循序渐进的过程,要防止急躁心理,有的同学贪多求快,囫囵吞枣,有的同学想靠几天冲刺一蹴而就,有的取得一点成绩沾沾自喜,遇到挫折又一蹶不振,针对这些实际问题要有针对性的教学。

  2、知识的积累、能力的培养是长期的过程,正如华罗庚先生倡导的"由薄到厚"和"由厚到薄"的学习过程就是这个道理。同时近几年高考试题中应用性问题的出现,更对学生把所学数学知识应用到实际生活中解决问题能力提出了更为严峻的挑战,应加强对应用数学意识和创造思维方法与能力的培养与训练。

  高中数学学习方法指导

  和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。

  高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。

  一、指导提高听课的效率是关键。

  1、课前预习能提高听课的针对性。

  预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

  2、听课过程中的科学。

  首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、激烈争论等。以免上课后还喘嘘嘘,或不能平静下来。

  其次就是听课要全神贯注。

  全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

  耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。

  眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势等动作,生动而深刻的接受老师所要表达的思想。

  心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。

  口到:就是在老师的指导下,主动回答问题或参加讨论。

  手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。

  若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。

  3、特别注意讲课的开头和结尾。

  讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。

  4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

  此外还要特别注意老师讲课中的提示。

  老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。

  最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

  二、指导做好复习和总结工作。

  1、做好及时的复习。

  课完课的当天,必须做好当天的复习。

  复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。

  2、做好单元复习。

  学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。

  3、做好单元小结。

  单元小结内容应包括以下部分。

  (1)本单元(章)的知识网络;

  (2)本章的基本思想与方法(应以典型例题形式将其表达出来);

  (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  三、指导做一定量的练习题

  有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定的“反思”,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过,把它们联系起来,你就会得到更多的经验和教训,更重要的是养成善于思考的好习惯,这将大大有利于你今后的学习。当然没有一定量(老师布置的作业量)的练习就不能形成技能,也是不行的。

高中数学学习方法2

  考试的内容与要求

  函数是描述数学对象变化规律的重要教学模型,是中学数学的主体内容。函数在中学阶段分别设有函数(函数概念、单调性、奇偶性、周期性、对称性、极值、图象等),指数函数与对数函数,三角函数,函数的应用等。它既是初中函数内容的继续与提高,也为高中数学的进一步学习奠定基础。

  向量是既有大小又有方向的量,具有“数”和“形”的双重特点,是一种广泛应用的数学工具。平面向量学习的主要内容是四种运算,共线与垂直的判断方法,夹角与长度的计算等。

  本次期末考试对上述内容的考查,既全面又突出重点,既注重知识的指导性与思想性,又考虑到各个章节的考试要求和相对独立性,所以建议在期末复习时,要注重基本概念、基本符号、基本性质、基本运算的复习与检查落实,选择一些体现数学思想、数学方法、有助于提高学生能力的典型题目进行巩固训练,达到提高复习效果的目的。

  具体步骤

  1、回归课本、明确复习范围及重点范围

  本学期我们高一学习了必修1、必修4两本教材。先把考查的内容分类整理,理清脉络,使考查的知识在心中形成网络系统,并在此基础上明确每一个考点的内涵与外延。在建立知识系统的同时,同学们还要根据考纲要求,掌握试卷结构,明确考查内容、考查的重难点及题型特点、分值分配,使知识结构与试卷结构组合成一个结构体系,并据此进一步完善自己的复习结构,使复习效果事半功倍。

  2、弄懂基本概念

  先把你以前学过的却不懂的知识,概念,定理再结合课本、笔记复习,直到弄懂为止。

  3、弄会基本方法

  复习课上,老师会把最基本,最重要的思想、方法再过一遍,这时候一定认真听(为什么有的同学好像平时没怎么好好学,可是考试成绩不错呢,就是因为他抓紧了这段时间),当然,既然是“过”一遍,不可能还像刚开始讲课那样详细,因此课后你一定要对老师讲的方法做针对性练习,真正把数学复习计划落实到实处。

  熟练掌握数学方法,以不变应万变。一般同一份试卷,相同方法不可能出现多次;同时,数学的主要方法在一份试卷上基本都能用得上。因此遇到思路一下不能突破的难题,要好好想想以前遇到的类似的问题是如何处理的,在已经作答好的题目中用过了哪些方法,常用的方法还有哪些没用得上,能否用来解决这个难题,只要平时多加分析,是不难发现解题思路的。

  三、考试方法指导

  1、规范作答争取少扣分

  一些同学考试时题题被扣分,大多是答题不规范,抓不住得分要点。如立体几何证明的次要条件要交待,分类讨论问题最后有综上可得,应用题最后要回答题目的设问,函数应用题要有定义域等。另外,有的题目是你以前会做,但是过这么长时间了,有可能思路忘了;有的题目你有思路,但是具体的一些解题细节不一定很清楚。的克服办法就是,数学复习计划中,无论做没做过,以前是否会做,都当成新题再做一遍!

  2、掌握好看与做的时间分配

  好多同学都觉得几天不做数学题后再考试,审题就会迟疑缓慢,入手不顺,运算不畅且易出错。所以每天必须坚持做适量的练习,特别是重点和热点题型,防止思想退化和惰化,保持思维的灵活和流畅。特别是停课复习期间,更要掌握好看和做的时间分配。

  3、解题过程

  (1)弄清问题.即从题目本身去获得从何处下手、向何方前进的信息。要逐字逐句地分析条件、分析结论、分析条件与结论之间的关系。

  (2)拟定计划.也就是寻找解题思路。

  (3)实现计划.就是把打通了的解题思路用文字具体表达出来。做到:方法简单、起点明确、层次清楚、定理准确、论证严密、书写规范。

  掌握每一个公式定理

  做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了一定的理解力。

  做课后练习题,前面的题是和课本例题一个级别的,如果课本上所有的题都会做了,那么基础夯实可以告一段落。

  进行专题训练提高数学成绩

  1.做高中数学题的时候千万不能怕难题!有很多人数学分数提不动,很大一部分原因是他们的畏惧心理。有的人看到圆锥曲线和导数,看到稍微长一点的复杂一点的叙述,甚至看到21、22就已经开始退却了。这部分的分数,如果你不去努力,永远都不会挣到的,所以第一个建议,就是大胆的去做。前面亏欠数学这门学科太多,就算让它打肿了又怎样,后面一点一点的强大起来,总有那么一天你去打它的脸。

  2.错题本怎么用。和记笔记一样,整理错题不是誊写不是照抄,而是摘抄。你只顾着去采撷问题,就失去了理解和挑选题目的过程,笔记同理,如果老师说什么记什么,那只能说明你这节课根本没听,真正有效率的人,是会把知识简化,把书本读薄的。先学学你能思考到答案的哪一步,学着去偷分。当然,因人而异,如果你觉得还有哪些题需要整理也可以记下来。

高中数学学习方法3

  高中数学学习方法:其实就是学习解题

  高中数学是应用性很强的学科,学习数学就是学习解题。搞题海战术的方式、方法固然是不对的,但离开解题来学习数学同样也是错误的。其中的关键在于对待题目的态度和处理解题的方式上。

  1、首先是精选题目,做到少而精。

  只有解决质量高的、有代表性的题目才能达到事半功倍的效果。然而绝大多数的同学还没有辨别、分析题目好坏的能力,这就需要在老师的指导下来选择复习的练习题,以了解高考题的形式、难度。

  2、其次是分析题目。

  解答任何一个数学题目之前,都要先进行分析。相对于比较难的题目,分析更显得尤为重要。我们知道,解决数学问题实际上就是在题目的已知条件和待求结论中架起联系的桥梁,也就是在分析题目中已知与待求之间差异的基础上,化归和消除这些差异。当然在这个过程中也反映出对数学基础知识掌握的熟练程度、理解程度和数学方法的灵活应用能力。例如,许多三角方面的题目都是把角、函数名、结构形式统一后就可以解决问题了,而选择怎样的三角公式也是成败的关键。

  3、最后,题目总结。

  解题不是目的,我们是通过解题来检验我们的学习效果,发现学习中的不足的,以便改进和提高。因此,解题后的总结至关重要,这正是我们学习的大好机会。对于一道完成的题目,有以下几个方面需要总结:

  ①在知识方面,题目中涉及哪些概念、定理、公式等基础知识,在解题过程中是如何应用这些知识的。

  ②在方法方面:如何入手的,用到了哪些解题方法、技巧,自己是否能够熟练掌握和应用。

  ③能不能把解题过程概括、归纳成几个步骤(比如用数学归纳法证明题目就有很明显的三个步骤)。

  ④能不能归纳出题目的类型,进而掌握这类题目的解题通法(我们反对老师把现成的题目类型给学生,让学生拿着题目套类型,但我们鼓励学生自己总结、归纳题目类型)。

  【摘要】“高中数学多边形内角和公式”数学公式是解题的要点,要灵活运用,希望下面公式为大家带来帮助:

  设多边形的边数为N

  则其内角和=(N-2)*180°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的外角和

  =N*180°-(N-2)*180°

  =N*180°-N*180°+360°

  =360°

  即N边形的外角和等于360°

  设多边形的边数为N

  则其外角和=360°

  因为N个顶点的N个外角和N个内角的和

  =N*180°

  (每个顶点的一个外角和相邻的内角互补)

  所以N边形的内角和

  =N*180°-360°

  =N*180°-2*180°

  =(N-2)*180°

  即N边形的内角和等于(N-2)*180°

  如何学好数学

  首先和敏捷对于来说固然重要,但良好的可以把效果提高几倍,这是先天因素不可比拟的。学好首先要过的是关。任何事情都有一个由量变到质变的循序渐进的积累过程。

  一.。不等于浏览。要深入了解内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于抓住重点,还可以培养自学,有时间还可以超前学习。

  二.听讲。核心在。1。以听为主,兼顾记录。2。注重过程,轻结论。

  3.有重点。4。提高听课。

  三.。像演电影一样把课堂,整理笔记,

  四.多做练习。1。晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推 高中历史,一步一步想,每个过程都必不可少,3。不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,

  五.总结。1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。3。周末再将一周做的题回头看一番,提出每道题的思路方法。4有问题一定要问。

  六.考前复习,1。前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。要重视基础,

  另外,听老师的话,勤学苦练不可少,没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。

  《希腊文集》中的方程问题

  《希腊文集》是一本用诗歌写成的问题集,主要是六韵脚诗。荷马著名的长诗《伊丽亚特》和《奥德赛》就是用这种诗体写成的。

  《希腊文集》中有一道关于毕达哥拉斯的问题。毕达哥拉斯是古希腊著名数学家,生活在公元前六世纪。问题是:一个人问:“尊敬的毕达哥拉斯,请告诉我,有多少学生在你的学校里听你讲课?”毕达哥拉斯回答说:“一共有这么多学生在听课,其中 在学习数学, 学习音乐, 沉默无言,此外,还有3名妇女。”

  我们用现代方法来解:设听课的学生有x人,根据题目条件可列出方程

  这是一个一元一次方程。

  移项,得

  答:毕达哥拉斯有28名学生听课。

  《希腊文集》中还有一些用童话形式写成的数学题。比如“驴和骡子驮货物”这道题,就曾经被大数学家欧拉改编过。题目是这样的:

  “驴和骡子驮着货物并排走在路上。驴不住地往地埋怨自己驮的货物太重,压得受不了。骡子对驴说:‘你发什么牢骚啊!我驮得的货物比你重。假若你的货物给我一口袋,我驮的货就比你驮的重一倍,而我若给你一口袋,咱俩驮和的才一样多。’问驴和骡子各驮几口袋货物?”

  这个问题可以用方程组来解:

  设驴驮x口袋,骡子驮y口袋。则驴给骡子一口袋后,驴还剩x-1,骡子成了y+1,这时骡子驮的是驴的二倍,所以有

  2(x-1)=y+1 (1)

  又因为骡子给驴一口袋后,骡子还剩下y-1,驴成了x+1,此时骡子和驴驮的相等,有

  x+1=y-1 (2)

  (1)与(2)联立,有

  这是一个二元一次议程组。

  (1)-(2)得 x-3=2,

  x=5 (3)

  将(3)代入(2),得y=7。

  答:驴原来驮5口袋,骡子原来驮7口袋。

  《希腊文集》有一道名的题目“爱神的烦恼”。这里有许多神的名字,先介绍一下:爱罗斯是希腊神话中的爱神,吉波莉达是赛浦路斯岛的守护神。9位文艺女神中,叶芙特尔波管简乐,爱拉托管爱情诗,达利娅管吉剧,特希霍拉管舞蹈,美利波美娜管悲剧,克里奥管历史,波利尼娅管颂歌,乌拉尼娅管天文,卡利奥帕管史诗。

  这道题也是用诗歌形式写在的:

  爱罗斯在路旁哭泣,

  泪水一滴接一滴。

  吉波莉达向前问道:波利尼

  “是什么事情使你如此伤悲?

  我可能够帮助你?”

  爱罗斯回答道:

  “九位文艺女神

  不知来自何方

  把我从赫尔康山采回的苹果,

  几乎一扫而光,

  叶芙特尔波飞快地抢走十二分之一,

  爱拉托抢得更多——

  七个苹果中拿走一个。

  八分之一被达利娅抢走,

  比这多一倍的苹果落入特希霍拉之手。

  美利波美娜最是客气,

  只取走二十分之一。

  可又来了克里奥,

  她的收获比这多四倍。

  还有三位女神,

  个个都不空手,

  30个归波利尼娅,

  120个归乌拉尼娅,

  300个归卡利奥帕。

  我,可怜的爱罗斯。

  爱罗斯原有多少个苹果?还剩下50个苹果。”

  设爱罗斯原来有x个苹果,则6位文艺女神抢走的苹果分别是 。

  可列出方程

  答:爱罗斯原来有苹果3360个。

  选自《中学生数学》20xx年5月下

  20xx高考数学复习三步曲

  编者按:小编为大家收集了“20xx高考数学复习三步曲”,供大家参考,希望对大家有所帮助!

  今年高考文理科的数学试卷总体难度不大,为师生所接受。文科试卷难易程度适中,尤其是填空题和选择题难度不大,解答题难易程度和试题坡度安排都比较合理,有利于考生的发挥,也有利于指导以后的学习。

  理科试卷容易题、中等题和难题比例恰当,注重逻辑思维能力和表达能力(运用数学符号)以及数形结合能力的考查,部分试题新而不难,开放题有所体现,把能力的考查落到实处。但我个人认为,今年试卷对高中数学的主干知识的核心内容考查不到位,但不等于我们今后可以完全不重视。

  抓基础:不变应万变

  把基础知识和基本技能落到实处。唯有如此才能以不变应万变。比如,文科第22题是一道经典题型,考查圆锥曲线上一点到定点距离,既考老师又考学生。所谓考老师是说这样的题型你讲过没有,是怎么讲的?学生的典型错误(以定点为圆心作一个与椭圆相切的圆,再利用判别式等于0)是怎么纠正?正确解法(转化为二次函数在某个区间上的最值)是怎么想到的?只有经过这样的教学环节,学生才能真正理解。所谓考学生是说你自己做错了,老师重点讲评了的经典问题,你掌握了没有?掌握的标准是能否顺利解答相应的变式问题。由于第(3)含有参数,需要分类讨论,能有效甄别考生的思维水平和运算能力。本题以椭圆(解析几何重点内容之一)为载体,考查把几何问题转化为代数问题的能力(这是解析几何的核心思想),以及含参数的二次函数求最值问题(也是代数中的重点和难点),一举多得。

  当然,可能会有人认为这道题形式不新,其实,要求考题全新既无必要,也不可能,只要有利于高校选拔和中学教学就好,不必过分求新、求异。

  理科的第22题相对较难,不少同学反映不好表述。若能从集合的包含关系这个角度考虑,则容易表述,部分考生是直接对两个数列进行分类,由于要用到一些多数学生不熟悉的整除知识,因而感到困难,无法下手。这就体现基础知识和基本技能的重要性。

  尽管今年理科试卷在知识点分布上有些不尽如人意,但复习不能受此影响,仍然要全面、扎实复习,不能留下知识点的死角,相应的技能、技巧要牢固掌握,思想方法都要总结到位,这样才能“不管风吹浪打,胜似闲庭信步”。

  破难题:提升应对力

  如何应对“题梗阻”?考试中遇到不会做的题目很正常,有些同学会因此影响临场发挥。考生进考场就像运动员进运动场,心理素质很重要,把心理辅导和答题技巧融于学习之中。在高三复习过程中,不仅要讲数学知识,同时还要训练学生的心理素质和培养学生的答题技巧,这样才能使学生在考场上应付裕如,出色发挥,考出好成绩。

  理科的22题第(2)卡住不少考生,耽误时间还影响心情,以致第(3)和后面第23题来不及或无心去做,其实,做第(3)题用不到第(2)的结论。而第23题是新编的开放性问题,首先要静心才能读懂题目,而读懂题目至少第(1)、(2)两题不难。要做到这些并不容易,不是临考前“先易后难”一句话学生就能做到,需要在平时教学过程中结合具体问题,训练学生的心理素质,提高其在解题过程中遇到困难时的应变能力,掌握应变策略,才能在考场上“敢于放弃”,从容跳过不会做的题或在解答题中跳步解答,把自己能做的题目先做对,把应得的分得到,这样考试总是成功的,无论分数高低。

  为何时间与成绩不成正比?高三数学就是大量解题,有些重点中学的优秀学生的高考成绩甚至不比高二时考分高,岂不是白学?其实,这是误解。数学讲究逻辑,问题从哪里来(已知),到哪里去(求证),中间有哪些沟沟坎坎(思维障碍),怎么克服(怎样进行等价转化),不仅是照葫芦画瓢的操作性(当然也是必要的)训练,更重要的是以数学知识为载体,让学生学会思考问题的方式方法,还要在解题后对问题作归纳总结,找出规律,有时还要把问题作适当推广,把学生的逻辑思维引到辩证思维。这样经过一年的高三数学学习,学生收获的不仅是分数,还有对人终生受用的思维品质的提高。

  重方法:培养好品质

  有些同学做了许多题,就是成绩提高不见提高,自己和家长都很纳闷。其实学习数学关键是要掌握方法,同时还要培养敢于做难题、新题的胆量和毅力。重复性操作的题目做再多,意义也不大。对待难题的态度是培养学生意志品质的好时机,不能轻易错过(当然也要因人而异)。有些同学往往认为只要弄懂思路,不必解到底。其实,这样的同学往往眼高手低,会而不对,考试成绩忽高忽低,原因在于某些细节处理不当,造成“一失足成千古恨”,事后以粗心搪塞过去。这就需要老师对学生深入了解,结合具体问题给予悉心指导,帮助学生找出真实原因,并制定改正错误的办法,这一过程表面上是帮助学生学会解题,实际上对学生意志品质的培养也就潜移默化地得到了落实。

  我们有理由相信,把解题和人的素质培养有机结合的高三数学教学,不仅能提高学生的解题能力,还能促使他们健康成长,让我们一起努力!

  以上就是为大家提供的“20xx高考数学复习三步曲”希望能对考生产生帮助,更多资料请咨询中考频道。

  生物数学概论

  生物数学是生物学与数学之间的边缘学科。它以数学方法研究和解决生物学问题,并对与生物学有关的数学方法进行理论研究。

  生物数学的分支学科较多,从生物学的应用去划分,有数量分类学、数量遗传学、数量生态学、数量生理学和生物力学等;从研究使用的数学方法划分,又可分为生物统计学、生物信息论、生物系统论、生物控制论和生物方程等分支。这些分支与前者不同,它们没有明确的生物学研究对象,只研究那些涉及生物学应用有关的数学方法和理论。

  生物数学具有丰富的数学理论基础,包括集合论、概率论、统计数学、对策论、微积分、微分方程、线性代数、矩阵论和拓扑学,还包括一些近代数学分支,如信息论、图论、控制论、系统论和模糊数学等。

  由于生命现象复杂,从生物学中提出的数学问题往往十分复杂,需要进行大量计算工作。因此,计算机是研究和解决生物学问题的重要工具。然而就整个学科的内容而论,生物数学需要解决和研究的本质方面是生物学问题,数学和电脑仅仅是解决问题的工具和手段。因此,生物数学与其他生物边缘学科一样通常被归属于生物学而不属于数学。

  生命现象数量化的方法,就是以数量关系描述生命现象。数量化是利用数学工具研究生物学的前提。生物表现性状的数值表示是数量化的一个方面。生物内在的或外表的.,个体的或群体的,器官的或细胞的,直到分子水平的各种表现性状,依据性状本身的生物学意义,用适当的数值予以描述。

  数量化的实质就是要建立一个集合函数,以函数值来描述有关集合。传统的集合概念认为一个元素属于某集合,非此即彼、界限分明。可是生物界存在着大量界限不明确的模糊现象,而集合概念的明确性不能贴切地描述这些模糊现象,给生命现象的数量化带来困难。1965年扎德提出模糊集合概念,模糊集合适合于描述生物学中许多模糊现象,为生命现象的数量化提供了新的数学工具。以模糊集合为基础的模糊数学已广泛应用于生物数学。

  数学模型是能够表现和描述真实世界某些现象、特征和状况的数学系统。数学模型能定量地描述生命物质运动的过程,一个复杂的生物学问题借助数学模型能转变成一个数学问题,通过对数学模型的逻辑推理、求解和运算,就能够获得客观事物的有关结论,达到对生命现象进行研究的目的。

  比如描述生物种群增长的费尔许尔斯特-珀尔方程,就能够比较正确的表示种群增长的规律;通过描述捕食与被捕食两个种群相克关系的洛特卡-沃尔泰拉方程,从理论上说明:农药的滥用,在毒杀害虫的同时也杀死了害虫的天敌,从而常常导致害虫更猖獗地发生等。

  还有一类更一般的方程类型,称为反应扩散方程的数学模型在生物学中广为应用,它与生理学、生态学、群体遗传学、医学中的流行病学和药理学等研究有较密切的关系。60年代,普里戈任提出著名的耗散结构理论,以新的观点解释生命现象和生物进化原理,其数学基础亦与反应扩散方程有关。

  由于那些片面的、孤立的、机械的研究方法不能完全满足生物学的需要,因此,在非生命科学中发展起来的数学,在被利用到生物学的研究领域时就需要从事物的多方面,在相互联系的水平上进行全面的研究,需要综合分析的数学方法。

  多元分析就是为适应生物学等多元复杂问题的需要、在统计学中分化出来的一个分支领域,它是从统计学的角度进行综合分析的数学方法。多元统计的各种矩阵运算,体现多种生物实体与多个性状指标的结合,在相互联系的水平上,综合统计出生命活动的特点和规律性。

  生物数学中常用的多元分析方法有回归分析、判别分析、聚类分析、主成分分析和典范分析等。生物学家常常把多种方法结合使用,以期达到更好的综合分析效果。

  多元分析不仅对生物学的理论研究有意义,而且由于原始数据直接来自生产实践和科学实验,有很大的实用价值。在农、林业生产中,对品种鉴别、系统分类、情况预测、生产规划以及生态条件的分析等,都可应用多元分析方法。医学方面的应用,多元分析与电脑的结合已经实现对疾病的诊断,帮助医生分析病情,提出治疗方案。

  系统论和控制论是以系统和控制的观点,进行综合分析的数学方法。系统论和控制论的方法没有把那些次要的因素忽略,也没有孤立地看待每一个特性,而是通过状态方程把错综复杂的关系都结合在一起,在综合的水平上进行全面分析。对系统的综合分析也可以就系统的可控性、可观测性和稳定性作出判断,更进一步揭示该系统生命活动的特征。

  在系统和控制理论中,综合分析的特点还表现在把输出和状态的变化反馈对系统的影响,即反馈关系也考虑在内。生命活动普遍存在反馈现象,许多生命过程在反馈条件的制约下达到平衡,生命得以维持和延续。对系统的控制常常靠反馈关系来实现。

  生命现象常常以大量、重复的形式出现,又受到多种外界环境和内在因素的随机干扰。因此概率论和统计学是研究生物学经常使用的方法。生物统计学是生物数学发展最早的一个分支,各种统计分析方法已经成为生物学研究工作和生产实践的常规手段。

  概率与统计方法的应用还表现在随机数学模型的研究中。原来数学模型可分为确定模型和随机模型两大类如果模型中的变量由模型完全确定,这是确定模型;与之相反,变量出现随机性变化不能完全确定,称为随机模型。又根据模型中时间和状态变量取值的连续或离散性,有连续模型和离散模型之分。前述几个微分方程形式的模型都是连续的、确定的数学模型。这种模型不能描述带有随机性的生命现象,它的应用受到限制。因此随机模型成为生物数学不可缺少的部分。

  60年代末,法国数学家托姆从拓扑学提出一种几何模型,能够描绘多维不连续现象,他的理论称为突变理论。生物学中许多处于飞跃的、临界状态的不连续现象,都能找到相应的跃变类型给予定性的解释。跃变论弥补了连续数学方法的不足之处,现在已成功地应用于生理学、生态学、心理学和组织胚胎学。对神经心理学的研究甚至已经指导医生应用于某些疾病的临床治疗。

  继托姆之后,跃变论不断地发展。例如塞曼又提出初级波和二级波的新理论。跃变理论的新发展对生物群落的分布、传染疾病的蔓延、胚胎的发育等生物学问题赋予新的理解。

  上述各种生物数学方法的应用,对生物学产生重大影响。20世纪50年代以来,生物学突飞猛进地发展,多种学科向生物学渗透,从不同角度展现生命物质运动的矛盾,数学以定量的形式把这些矛盾的实质体现出来。从而能够使用数学工具进行分析;能够输入电脑进行精确的运算;还能把来自名方面的因素联系在一起,通过综合分析阐明生命活动的机制。

  总之,数学的介入把生物学的研究从定性的、描述性的水平提高到定量的、精确的、探索规律的高水平。生物数学在农业、林业、医学,环境科学、社会科学和人口控制等方面的应用,已经成为人类从事生产实践的手段。

  数学在生物学中的应用,也促使数学向前发展。实际上,系统论、控制论和模糊数学的产生以及统计数学中多元统计的兴起都与生物学的应用有关。从生物数学中提出了许多数学问题,萌发出许多数学发展的生长点,正吸引着许多数学家从事研究。它说明,数学的应用从非生命转向有生命是一次深刻的转变,在生命科学的推动下,数学将获得巨大发展。

  当今的生物数学仍处于探索和发展阶段,生物数学的许多方法和理论还很不完善,它的应用虽然取得某些成功,但仍是低水平的、粗略的、甚至是勉强的。许多更复杂的生物学问题至今未能找到相应的数学方法进行研究。因此,生物数学还要从生物学的需要和特点,探求新方法、新手段和新的理论体系,还有待发展和完善。

  20xx年高考数学命题预测之立体几何

  【编者按】近几年高考立体几何试题以基础题和中档题为主,热点问题主要有证明点线面的关系,如点共线、线共点、线共面问题;证明空间线面平行、垂直关系;求空间的角和距离;利用空间向量,将空间中的性质及位置关系的判定与向量运算相结合,使几何问题代数化等等。考查的重点是点线面的位置关系及空间距离和空间角,突出空间想象能力,侧重于空间线面位置关系的定性与定量考查,算中有证。其中选择、填空题注重几何符号语言、文字语言、图形语言三种语言的相互转化,考查学生对图形的识别、理解和加工能力;解答题则一般将线面集中于一个几何体中,即以一个多面体为依托,设置几个小问,设问形式以证明或计算为主。

  20xx年高考中立体几何命题有如下特点:

  1.线面位置关系突出平行和垂直,将侧重于垂直关系。

  2.多面体中线面关系论证,空间“角”与“距离”的计算常在解答题中综合出现。

  3.多面体及简单多面体的概念、性质多在选择题,填空题出现。

  4.有关三棱柱、四棱柱、三棱锥的问题,特别是与球有关的问题将是高考命题的热点。

  此类题目分值一般在17---22分之间,题型一般为1个选择题,1个填空题,1个解答题

高中数学学习方法4

  关键词:高中;数学;方法

  高中阶段是学生学习的关键时期,这是培养学生良好学习习惯和正确学习方法的重要时期。高中阶段的学习一改初中学习的模式,重在学生学习方法的培养。很多在初中学习还不错的学生到高中时期却出现学习成绩下滑,首先一个重要的标志就是数学成绩的下降。这主要是因为很多学生还不能转变初中的学习思维,不了解高中数学的特点,因此经常事倍功半。因此,要想学好高中数学,必须改变固有的思维,从方法上找原因。

  一、了解高中数学的特点,从而转变思维认知

  1.数学概念与语言的抽象化

  进入高中阶段后,很多学生表现出明显的不适应,他们很多反映高中数学过于复杂,理解起来很困难。的确,高中数学与初中数学相比,在概念的定义上和语言的描述上都更具有抽象性和专业化。初中数学以形象化的描述为主,而高中数学则是侧重于对学生逻辑思维能力和数学方法的探究,因此在表达和定义上更具有专业性特点。

  2.思维方法和逻辑能力的培养

  在小学和初中阶段,是打好数学基础的阶段,因此,这一阶段着重对学生数学兴趣的激发。在解题方法上,多是有着明晰的步骤,每道题都具有统一的解题方法,比如因式分解题,应该先看什么再看什么,都有着明确的步骤规定,学生只要掌握步骤即可。因此,初中的学习模式基本上是固定的,而高中数学则彻底改变了这一模式,它对学生的思维能力和逻辑能力有着非常高的要求,要求学生能够创新思维,运用适当的数学方法解题,重在对学生数学能力的培养。

  二、养成良好的数学学习方法和习惯

  1.依赖心理

  很多学生上高中后学习成绩下滑,很大程度上是因为在高中以前养成的依赖心理。首先,是对教师的依赖。初中时期数学课都是教师传授解题方法,学生只要按部就班学好现成的就可以取得很好的成绩;其次,是对家长的依赖。很多家长都会在家给孩子辅导,帮助他们解决难题。因此,这些因素都导致了学生产生很强的依赖心理,把这种心理带到高中学习中,依靠着他们推动着自己学习,而不会主动地去获取知识,这样自然导致成绩的下滑。

  2.思想误区

  很多学生对高中学习在思想上有个误区,就是普遍认为高一高二不重要,只要高三努力了就可以考上好大学。其实,这种思想是初中以来形成的,由于我们国家采取义务教育,使得很多学生都能轻易地考上高中,但是高中学习并不是如此,目前我们国家的高等教育还未完全普及,大学教育仍然具有很强的选择性,因此,只有一部分成绩优秀的学生才能上得了好大学。而很多高中生并未认识到这种情况,等到高三才努力为时已晚。

  3.学不得法

  高中数学的学习重在培养学生的思维方法和数学能力,很多学生学习下降在很大方面是由于学习方法不当。教师上课一般都会引导学生学习概念,讲析概念的来龙去脉,剖析重点、难点,这就使学生养成了依赖心理,只注重记笔记,而没有听教师在讲什么。因此导致在课后不能完全消化课堂知识,只能根据概念硬写作业,这样必然导致数学的学习效率不高。

  三、运用科学的方法学习数学

  好的学习方法和学习习惯经常能够事半功倍,数学学习就是

  如此,有的学生花了很多时间和精力,可还是不能提高数学成绩,而有的学生轻而易举就能获取高分,究其原因在于科学的学习方

  法。只有养成一个科学的学习方法,才能把数学知识学以致用。

  1.培养科学的数学学习习惯

  数学的学习不仅要靠努力,还要有一套科学的学习方法。所谓的科学学习方法,指的是学生能够把握数学学科的特点,根据自身的学习情况和思维能力,探索出一套适合自己学习的方法,从而形成自己的学习习惯。良好的数学学习习惯包括学习时间的计划、课前预习与课后复习、上课专心、独立完成做作业、虚心请教等,这些良好习惯的培养可以有效提高数学学习成绩。

  2.循序渐进,切勿急躁

  在数学学习中经常会有学生抱怨数学成绩见效太慢,自己花了那么长时间却收效甚微,甚至开始怀疑自己的能力;而有的学生容易大喜大悲,取得一点成绩便沾沾自喜,遭遇挫折便灰心丧气,这种情绪的波动十分不利于数学的学习。其实,数学的学习是项长期的工程,不能盲目追求速度,更不能因为一时的成败就盲目否定自己。只要大家端正态度,遵循数学学习的方法特点,注重夯实数学基础,拓展数学思维,就能够取得良好的数学成绩。

  综上所述,高中数学学习重在培养学生思维逻辑能力,侧重对学生学习方法的引导,学生只有根据自己的实际情况,选择适合自己的学习方法,灵活掌握数学知识,做到学以致用,才能使数学学习变得轻而易举。

高中数学学习方法5

  数学被很多学生认为是一门很难的学科,高中数学更是如此,但是数学作为三大主课之一,所占的分量自是不清,很多学生也明白如果数学学不好的话想要考上理想的大学是天方夜谭,但是苦于无学习之法,那么高中数学都有哪些学习方法呢?

  方法/步骤

  课前预习:一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。

  记笔记:这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。

  课后复习:同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。

  涉猎课外习题:想要在数学中有所建树,取得好成绩,光靠课本上的知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。

  学会归类总结:学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率(因为公式都绑在一起了吗)。

  建立纠错本:我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。

  写考试总结:写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向,关于考试总结怎么写可以参考小编的“考试总结怎么写”这篇经验。

  培养学习兴趣:又是一个老话题了,今天小编好像讲了很多“废话”,虽然情况确实也是如此,但是小编仍然要讲,兴趣是最好的老师(又是废话),只有有了兴趣,才会自主自发的进行学习,学习的效率才会提高。当然建立兴趣不是一件容易的事情,怎样才能对数学产生兴趣还需自己去发掘,如果实在不能产生兴趣,只有掌握以上学习方法了。

高中数学学习方法6

  很多学生以优异的数学成绩进入了向往已久的高中,但却有很多学生仍是以原来的思维和方法来学习高中数学,这往往造成了数学成绩的下滑。尽管很多学生仍很用功,但成绩却很不如意,并且在初三升入高中的学生中,都认为高中数学枯燥无味,感觉知识点多,学习数学的压力很大。所以在这里就初中数学和高中数学的区别和联系来给新高一学生和家长们提几点建议:

  一、初中数学形象化,便于学生理解,并且联系生活实际比较多。对于这些知识点,只要用心一些,很是比较容易把握的,运用起来也会比较自如。而高中数学相对来说则比较抽象,学生经常不能很好的把所学知识理解透彻,甚至进入理解误区,如此,便造成运用定理和公式不熟练或运用错误的现象。针对这些情况,建议家长由专业教师引导一下,深入浅出,为高中数学后续课程的学习打下坚实的基础;

  二、初中数学浅显化,学生只要认真思考,理解其所表达的意思。而高中很多知识点则较为隐晦,学生体会不到所表达的意思。比如:初中所学的二次函数,比较多的偏向于感性认识,学生们往往能较好地掌握,但是进入高中之后,高中数学对二次函数提出了新的更高的要求,比较偏向于理性思维时,某些学生便会适应不过来。

  三、初中数学知识容量相对较小。总体而言,初中数学知识点较少,学生能够通过三年的系统学习,比较好地掌握。高中数学则知识点众多,而每个章节所包含的小知识点则更是繁杂,学生们则往往难以适应。

  综上,建议学生与家长以谨慎、认真的态度去对待初三升高中这一蜕变的阶段,因为这是我们迈进高中的第一步,只有第一步走踏实了,我们才能走过高中,踏进高考的大门!

高中数学学习方法7

  一、基本知识

  1.定义:

  (1) .数列:按一定次序排序的一列数

  (2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列

  等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列叫做等比数列

  写作素材--美句仿写

  1.太阳无语,却放射出光辉;高山无语,却体现出巍峨。

  蓝天无语,却显露出高远;大地无语,却展示出广博。

  鲜花无语,却散发出芬芳;青春无语,却散发出活力。

  2.什么样的年龄最理想?鲜花说,开放的年龄千枝竞秀。

  什么样的青春最辉煌?太阳说,燃烧的青春一片光芒。

  什么样的心灵最明亮?月亮说,纯洁的心灵晶莹透亮。

  什么样的人生最美好?海燕说,奋斗的人生快乐无穷。

  3.我梦想:来到塞外的大漠,在夕阳的金黄中感受“长河落日圆”的壮丽。

  我梦想:来到海边的沙滩,从波涛的澎湃中感受“乱石穿空,惊涛拍岸,卷起千堆雪”的惊心动魄。

  我梦想:来到白雪皑皑的高山,在朝阳的艳丽中,领略“红装素裹”的分外妖娆。

  4.幸福是“临行密密缝,意恐迟迟归”的牵挂;

  幸福是“春种一粒粟,秋收千颗子”的收获;

  幸福是“采菊东篱下,悠然见南山”的闲适;

  幸福是“不畏浮云遮望眼,只缘身在最高层”的追求。

  5.书是我的精神食粮,它重塑了我的灵魂。

  简爱说过:“我们是平等的,我不是无感情的机器”,我懂得了作为女性的自尊。

  白朗宁说过:“拿走爱,世界将变成一座坟墓”,我懂得了为他人奉献爱心是多么重要。

  裴多菲说过:“生命诚可贵,爱情价更高。若为自由故,二者皆可抛”,我懂得了自由的价值。

  鲁迅说过:“不在沉默中爆发,就在沉默中灭亡”,我懂得了反抗精神的可贵。

  每读完一本书,我就完成了一次生命的感悟。

  6.幸福是贫困中相濡以沫的一块糕饼,

  幸福是患难中心心相印的一个眼神;

  幸福是父亲一次粗糙的抚摸,

  幸福是朋友一个温馨的字条;

  幸福是母亲一声温柔的叮咛,

  幸福是老师一次亲切的问候。

  7.爱心是冬日里的一片阳光,使饥寒交迫的人分外感到人间的温暖。

  爱心是沙漠中的一泓泉水,使濒临绝境的人重新看到生活的希望。

  爱心是夜空中的一轮明月,使孤苦无依的人即刻获得心灵的慰藉。

  爱心是春天里的一场细雨,使心灵枯萎的人特别感到情感的滋润。

  爱心是夏日里的一阵清风,使心急如焚的人感到无比的凉爽。

  爱心是黑夜里的一座灯塔,使迷失方向的航船找到停靠的港湾。

  8.假如生命是一株小草,我愿为春天献上一点嫩绿。

  假如生命是一棵大树,我愿为大地(夏日)撒下一片绿阴(阴凉);

  假如生命是一朵鲜花,我愿为世界奉上一缕馨香;

  假如生命是一枚果实,我愿为人间留下一丝甘甜。

  9.生命真是一个奇迹。

  一枝从污泥里长出的夏荷,竟开出雪一样洁白纯净的花儿;

  一粒细细黑黑的萤火虫,竟能在茫茫黑夜里发出星星般闪亮的光。

  一株微不足道的小草,竟开出像海洋一样湛蓝的花;

  一只毫不起眼的鸟儿,竟能在枝头唱出远胜小提琴的夜曲;

  一条柔软无骨的蚯蚓,居然能在坚实的土地里如鱼在海中似的自由遨游。

  10.大自然能给我们许多启示:

  滴水可以穿石,是在告诉我们做事应持之以恒;

  大地能载万物,是在告诉我们求学要广读博览;

  青松不惧风雪,是在告诉我们做人要坚毅刚强;

  成熟的稻穗低着头,那是在启示我们要谦虚;

  一群蚂蚁抬走骨头,那是在启示我们要齐心协力。

  11.人们都爱秋天,爱她的天高气爽,爱她的云淡日丽,爱她的香飘四野。

  人们都爱莲花,爱她的亭亭玉立,爱她的不蔓不枝,爱她的香远益清。

  人们都爱春天,爱她的风和日丽,爱她的花红柳绿,爱她的雨润万物。

  12.古往今来,大凡有所建树者。无不是临渊之后退而结网者。

  如果哥伦布只是“临渊羡鱼”,而不去辟风斩浪,扬帆远航,他又怎么会有发现新大陆的壮举?

  如果哥白尼只是“临渊羡鱼”,而不去苦心观测,创立新说,他又怎么会写出《天体运行》这部巨著?

  如果只是 “临渊羡鱼”,而不去开通丝绸之路,张骞怎会有通西域那鞍前的潇洒?

  如果只是“临渊羡鱼”,而不去开辟海上航线,鉴真又怎么会东海那水上风流?

高中数学学习方法8

  这门课我还是比较痛心的。其实从高一开始我的数学就不算好的,只能说还不错,中等的水平吧。高三一年,考试挺多的,一直在130左右,最后几次考试也都能到135的水平,可惜最后高考发挥真的很恶心,很失常,有一个题在考场上硬是没想到怎么做,下来两分钟之后就会了。

  我想说的是,其实我对数学,尤其是高中文科数学,觉得没有多困难。知识点就是那些,考试也就是那么些题型。关键就看各位同学是不是真能踏踏实实搞清楚教材上的东西,能认真听老师讲课,讲典型的题型,是不是能好好做作业,做一些其他的题,做高考真题,是不是能多思考,多研究一下这个题目的思路了。

  教材,方法,做题,总结,思考,等等,都是至关重要的。题海战术对数学,我相信是管用的,不过也得结合每个人自身情况来做。

  教材至关重要!教材的重要性我都已经不想再提及了,实在是最基本的。作为一个学生,虽然教材也许会枯燥些,但是里面都是必须学好的东西。所有基础差的同学,没有别的可说的,都是,教材上的基础概念,公式,例题,习题,所有的都必须搞懂,没得偷懒,否则你会知道后果的!

  如果说一个宏观的我怎么学数学的话,那就是如下内容了。

  从高一开始,我就有笔记本,这个是必需的。老师上课的板书从来没有漏过一个知识点,没有漏掉过一个例题,都记在笔记本上。而且一定要上课的时候就听懂老师的思路,即使有不懂的,下课一定要去找老师提问。

  笔记本上,基础概念,公式,例题,老师让我们课上做的题,都要记下来。其实目的很简单,以后好复习,而且写一遍有助于记忆。

  下课之后,在每天做作业之前,我都会把笔记本拿出来先看一遍,今天主要什么知识,什么例题,主要的思路方法是什么,然后再去做作业。

  其实作业里的很多题都不超出老师上课所涉及到的题型知识。有些确实难的,一定要自己先思考怎么做,实在做不出来就标注一下,拿答案来看。搞清楚自己到底卡在哪个地方了,然后把这个题当作一个典型记下来,当作一个方法的示例。

  另外就是自己做的练习了。我当时每一门课都有一本辅导书。或者是中学教材全解或者是王后雄或者是其他的,都是我自己亲自到书店去挑的,自己觉得好才去买。我是以自己学习情况来做题的,会的题做一两个就行了。如果是不会的,就一定会好好做,仔细研究题目整个的思路。后来发现考试里其实也就是很多见过的题型,方法都有共通之处。

  高考复习,我就是很乖地跟着老师走。然后做老师的练习。然后自己做高考题,做别的模拟题。查缺补漏,多总结做题的方法。有些题型一开始我也不知道该怎么想,后来做多了,再加上老师一轮复习总结过方法,看看例题,自己慢慢就开窍了,看到之后也不会害怕了。

  一定要有自信,不可以有抵触心理,不可以厌恶一门科目,否则你绝对学不好。我并不喜欢数学,但是我为了高考是一定会把它好好学好的。得数学者得天下,这句话没错!

  关于所有的考试和练习:

  请大家珍惜每一次练习,考试。

  这种时候都是对自己这一阶段学习的一次检查。是非常必要的,查缺补漏都靠这个了。

  不要太过于在乎分数。

  每次做完一定要找出自己的问题,是基础不牢,还是粗心大意,还是方法没有掌握等等。在困惑的时候一定要和老师好好交流。

  一定记住,不要把问题归结于什么心态不好,不在状态这种虚无缥缈的原因上,一定要找到最基础最根本的原因!否则你就永远晕头转向,不知道该朝哪个方向努力!

  关于作弊,提前查答案等等不诚实的行为。我只能说,出来混的,迟早要还的,不信的话,高考见吧。浪费掉的是你每次练习检验自己的机会,浪费掉的是自己这么多年来的学习,你自己的心里也会不安的!

  在一轮复习中,老师会按照知识点复习。复习中,老师在课堂上会讲一些经典的例题和一些必会的基础题型。这些题型请大家务必做好做透,将它的方法吃透。上完课后做作业前,请大家把这些题再仔细看一遍,之后再开始做作业,事半功倍。

  请大家在每个知识点结束时争取将这个知识点的问题解决。不说难题都没有问题,至少基本的概念,方法要会。

  在做难题的时候,要注意方法。其实数学也是有方法可找的。就比如说解析几何,椭圆这类型的题,是联立还是点差法,在每次做完题后,根据题目设问的类型要进行反思和整理。

  考试的时候,大家务必拿到的分,就是选择除最后一道,填空除最后一道,大题的前几道,这些题拿到了,上100肯定没问题。那些难题,再提升提升,120以上应该是可以的。

  做数学题一定要练速度,在做作业的时候也不要拖沓。但是记住数学用掉你多少时间都不过分,数学的确对于文科生来说挺重要的,如果你的文数学的好会非常沾光的。

  上面是原来写的,很简略。现在就每个大的知识点谈谈我的看法。

  函数:

  这是最开始的一个内容。我高一学的也不能说有多好。考试分数也不算高,但是庆幸的是教材上的概念公式啥的搞得很清楚。所以在一轮复习的时候也就比较仔细去听这个章节。

  其实函数要求掌握的就是函数的性质以及几个特别的函数。题型也都大同小异。我就是跟着老师的复习脚步走。我们的复习书是《步步高》,我按照老师要求先填好最前面的知识结构,然后看给出的例题以及解析,然后按照老师要求一个个去做题。不会的题就标出来,每次考试前就拿着这本书去复习。

  像函数,我当时在学校,在家里,在外面的辅导机构,很多题型做了很多遍,很多经典的题型做了一遍又一遍,方法自然就很熟悉了。

  导数:

  这一块看似很难。刚开始做大题的时候,导数大题永远做不好,最后一问永远不知道是什么方法,即使老师都已经教过几次了。

  后来就觉得,这样下去不行,绝对不可以给自己设下限制,不能潜意识里觉得做不了,一定要试着去做。就从一个很普遍的求范围的题下手了。看过去其实还是不敢下手去做,但后来就模仿老师的方法,将要求的那个a放到一边,其他的都放到另外一边。然后对另外一边的式子求导,求范围,进而求出a的范围。后来这么一做发现,也不过如此,没有难到哪里去。

  后来就是在做题的时候,积极吸收老师讲过的方法,结合题目的情况,多试几次。哪怕这次做不对,就记下来,以后做的时候又多了一条思路。

  [标签:高考数学,数学学习方法,学习方法]

高中数学学习方法9

  一、常见现象:

  1、高一新生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上全市重点高中,就说明了自己在学习上有一套。自己初中怎样学,高中还怎样学,就一定能成功。不知道改进学习方法。

  2、有的学生甚至认为,刚上高一,适当对自己放松一下,奖励一下自己前一段的苦学,一两个月以后再追,也不会出现什么问题。这种不求上进,甚至釜底抽薪的想法,大错特错。

  3、新生面临着新的学习任务,缺少迎难而上的思想准备。暑假期间,疯玩疯闹。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。

  4、很多学生对高中阶段的学习特点,缺少全面准确的了解,更缺少系统的学习方法。

  二、学习问题:

  1、教学进度太快了,讲的东西太多了,课外作业太难了。有很多学生作业中的困难越来越多。有的学生,一看见数学作业就想哭,但是你现在先别哭,三天以后你再回头看,当初的困难根本就不值得一哭。真正值得你大哭一场的是每天都这样,真正的度日如年!!!

  2、期中考试以后,就有很多同学面临了人生空前的失败,于是惊慌失措,痛苦不堪。有四分之一,甚至更多的学生会在期中考试时,数学不及格,情绪低落,从此对学习就丧失了信心。

  3、还有的学生,老是自我感觉不错,但是每次考试成绩都是一踏糊涂。也有的学生,校内考试分数很高,一旦区、市统考,成绩就一落千丈。

  三、数学学习的八大方法:

  1、先看笔记,后做作业。有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢其原因在于,学生对教师所讲的内容,还没能达到教师所要求的深层次理解。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看,这是好学生与差学生的最大区别。如果平时不注意,学生就会感到学习越来越吃力。

  2、做题之后,加强反思。学生一定要明确,现在正做着的题,一定不是考试的题目。而是要运用现在正做着题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。要总结出:这是一道什么内容的题,用的是什么方法,做完作业,回头看,价值很大。要做到知识成片,问题成串。要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。有了以上五个回头看,学生的解题能力才能与日俱增。投入的时间虽少,效果却很大,事半功倍。

  有的学生认为,要想学好数学,只要多做题,功到自然成。其实不然。一般来说,做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多做题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。打个比喻:有很多人,因为工作的需要,几乎天天都在写字,写了几十年的字,写字的水平也没提高,还是原来的水平。多写字不等于是受到了写字的训练!要把提高当成自己的目标,要把自己的活动合理、系统的组织起来,要善于总结和反思,水平才能提高。

  3、主动复习,总结提高。学生自己进行章节总结是非常重要的。初中时是老师替学生做总结,做得细致,深刻,完整。高中是自己给自己做总结,老师不但不给做,而且还是讲到哪,考到哪,不留复习时间,也没有明确指出做总结的时间。那么怎样做章节总结呢

  ①、要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能把厚书读成薄书,积累起最适合自己的、独特的复习材料。

  ②、把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。分类复习,不要遗漏。

  ③、在基础知识的疏理中,要罗列出所学的所有定义、定理、法则、公式。要做到同时能从正反两方面对其进行应用。

  ④、把重要的、典型的各种问题进行编队。找出它们之间的关系,总结出问题的来龙去脉。一定要能居高临下地看到问题的结构和变化。不然的话,陷入题海中,是徒劳无益的。这一点,是提高高中数学水平的关键所在。

  ⑤、总结那些尚未归类的问题,详细标明,及时突破。

  ⑥、找一份适当的试卷进行计时测验。然后再对照答案,查漏补缺。

  4、重视改错,错不重犯。一定要重视改错工作,做到错不再犯。初中数学教学采取的方法是,把各种可能的错误,都告诉学生注意,只要有一人出过错,就要提出来,让全体同学引为借鉴。这叫一人有病,全体吃药。高中数学课没有那么多时间,除了少数几种典型错,其它错误,不能一一顾及。只能谁有病,谁吃药。如果学生有病,而自己却又忘记吃药,没人会一再地提醒他应该注意些什么。如果能及时改错,那么错误就可能转变为财富,成为不再犯这种错误的预防针。但是,如果不能及时改错,这个错误就将形成一处隐患。有的学生认为,自己考试成绩上不去,是因为自己做题太粗心,其实并非如此。打一个比方。比如说,学习开汽车:新手对汽车的机械原理、设计原因、操作规程都了解的很清楚,也不能自己直接上车,因为还缺乏必要的练习。仅凭一两次能正确地完成任务,并不能说明永远不出错。练习的数量不够,往往是学生出错的真正原因。如果学生的基础知识千疮百孔,隐患无穷,那么今后的数学肯定难以学好。

  5、积累资料,随时整理。要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。

  6、课外读物,精挑慎选。初中学生学数学,如果不注意看课外读物,一般地说,不会有什么太大的影响。高中则大不相同。高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,适当的看看外面的世界。当然,物极必反,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍而功半。

  7、配合老师,主动学习。高一新生的学习主动性太差,这是一个普遍存在的问题。小学生,常常是完成了作业就可以尽情地欢乐。初中生基本上也是如此,听话的孩子就能学习好。高中则不然,作业虽多,但是只做作业,是绝对不够的,因为老师不可能面面俱到,给每位同学具体指明。因此,高中新生必须提高自己学习的主动性。准备向将来的大学生的学习方法过渡。

  8、合理规划,步步为营。高中的学习是非常紧张的。每个学生都要投入自己的几乎全部的精力。要想能迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划,例如第一学期的期末,自己计划达到班级的平均分数,第一学年,达到年级的前三分之一,如此等等。此外,还要给自己制定学习计划,详细地安排好自己的零星时间,并及时作出合理的调整。

高中数学学习方法10

  1、先看笔记,后做作业

  有的学生认为老师讲过的,自己已经听得明明白白了,但是为什么自己一做题就困难重重了呢其原因在于,学生对老师所讲内容的理解还没能达到教师所要求的层次。

  因此,在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。

  2、做题之后加强反思

  学生要把自己做过的每道题加以反思,弄明白题目的解题思路与方法,总结一下自己的收获。

  要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串;逐渐构建起一个科学的网络系统。

  还要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质是什么;题目中的已知与所求能否互换,能否进行适当增删改进。

  3、主动复习和总结

  做章节总结是非常重要的。怎样做章节总结呢

  ①要把课本、笔记、单元测试卷等都从头到尾阅读一遍。

  ②把章节的内容一分为二,一部分是基础知识,一部分是典型问题。要把对技能的要求,列进这两部分中的一部分,不要遗漏。

  ③在基础知识的疏理中,要罗列出所学知识的所有定义、定理、法则、公式,做到三会两用。

  ④把重要的、典型的各种问题进行编队。

  ⑤总结那些尚未归类的问题,作为备注进行补充说明。

  4、重视改错,错不重犯

  一定要重视改错工作,做到错不再犯。

  5、积累资料,随时整理

  要注意积累复习资料。把课堂笔记、练习、各类单元测验、各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时需要注意的重点内容,一目了然。

  6、精挑慎选课外读物

  高中数学考的是学生解决新题的能力。作为一名高中生,如果只是围着自己的老师转,不论老师的水平有多高,必然都会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和老师的教学体系,也必将事倍功半。

  7、配合老师,主动学习

  高中生必须提高学习的主动性,准备向将来的大学生学习方法过渡。

  8、合理规划,步步为营

  高中的学习是非常紧张的,每个学生都要投入几乎全部的精力。要想迅速进步,就要给自己制定一个较长远的切实可行的学习目标和计划。此外,还要详细地安排好自己的零星时间,并及时作出合理的微量调整。

  学习数学的方法和思想技巧

  1,特殊值法

  2,数形结合的思想

  3,反证法

  4,数学归纳法

  5,方程思想

  6,建模的思想(举一反三)

  7,极限思想

  8,待定系数法

  一、课内重视听讲,课后及时复习理解。(认真听讲真的很重要)

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯。(习惯成自然)

  要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的

  三、调整心态,正确对待考试。(心态决定成败)

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去做太难的题目。在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

  最后,还是要多练多问,多积累,而且要多总结,数学是一个见效很快的学科,只要努力成绩很快就长上来了。

高中数学学习方法11

  学习程度不同的学生需要不同的学习方法。

  如果你正因为数学的学习状态低迷而苦恼,请按如下要求去做:预习后,带着问题走进课堂,能让你的学习事半功倍;想要做出完美的作业是无知的,出错并认 真订正才更合理;老师要求的练习并不是“题海”,请认真完成,少动笔而能学好数学的天才即使有,也不是你;考试时,正确率和做题的速度一样重要,但是合理 地放弃某些题目的想法能帮助你发挥正常水平。

  如果你正因为数学的学习成绩进步缓慢而郁闷,请接受如下建议:收集你自己做过的错题,订正并写清错误的原因,这些材料是属于你个人的财富;对于考试成 绩,给自己定一个能接受的底线,定一个力所能及的奋斗目标;合理的作息时间和良好的学习习惯将有助你获得稳定的学习成绩,所以,请制定好学习计划并努力坚 持;把很多时间投入到一个科目中去,不如把学习精力合理分配给各个学科。人对于某一知识领域的学习常出现“高原现象”,就是说当达到一定程度,再努力时, 进步开始不明显。数学重在培养观察、分析和推断能力

  想成功,学习方法起着至关重要的作用。

  学习数学,必须注重灵活精学,联系题意,针对问题,展开分析与解决,灵活的运用数学公式,不死记硬背。

  学好数学,首先做到上课必须认真听讲,对老师提出的问题,深入思考与探究,课后进行题型的加深与反馈,确保知识的巩固。

  而且,数学的知识最为广泛,题目的解答有多种的解法,不可能短时间内学完,因此,我们的学习数学时应做到“三心”。即“学好数学的信心、认真学习的决心和持之以恒的恒心。”只有这样才会让知识得到发展与思维的飞跃。

  由于数学的题型千变万化、复杂多变。我们不可能把所有的题目解完,对此,做数学题时不须多做,重要的是精选,把一道题的类型完全理解透彻。做到举一反三、循序渐进、熟能生巧。所谓“宝剑锋从磨砺出,梅花香自苦寒来”,汗水的付出,必然会得到满足的回报

高中数学学习方法12

  一、理解基本概念

  数学大厦是由一个个公理、定义、定理作基础砌成的,加强对这些概念的理解,有助于我们解题。且不谈对集合、极限、三垂线这些内涵丰富的概念的理解,单是从“a大于b”的定义上就可挖掘出很多东西。书上如此定义:“如果a-b>0,则称a>b”,从定义我们可以直接得到判定两个数大小的一种方法------作差比较法,深入思考可得a=b+△x(△x>0)(增量代换法),a>a+b/2>b(放缩法)等。越是这样深入想,就越觉得数学有无穷魅力。

  二、总结实践经验

  高三时,题目得很多,这就得从题目中理出一个头绪来,掌握通性法。例如,做了不少不等式的证明题后,可总结也证不等式的基本方法为:比较法(作差、作商)、公式法、判别式法、数学归纳法等,特殊方法有放缩法,常用技巧有“图像法”、“换元法”、

  “裂项法”等。总结之后,对运用这些方法解出的典型题目做一个回忆,加深印象,达到“见过的题目类型会做,棘手的题目可用这些方法分别去做”的境界,解题能力大为提高。

  做题目难免出错,要对常出错的地方进行总结,写出错因,并用一个本子记下来(不必记题目)。例如:等比数列求和要考虑公比是否为1,偶次根号下的数要大于0(实数),除数不能为0等等。

  应该说,每次考试后,总有自己的一些对解题的体会,不妨定在一个本子上。如:考试时应注重时间的分配,解题速度如何,是计算出错还是方法不对,书写要整洁有条理等。

  通过这些总结,对自己有了更深地了解,哪些地方娴熟,哪些地方薄弱,然后对症下药,使自己的知识完善,技能得到提高。

  三、形成知识网络

  在做好一、二点的基础上,要形成自己的知识网络,“由厚变薄”。高中数学知识包括代数、立体几何、解析几何,其中代数分支较多,包括集合、函数、不等式、数列与极限、复数、排列组合、二项式定理。各章又可细分,于是形成了一个大的网络。不过,要构建这个大网络,首先得构建好一个个小网络,即对每一个章节进行构建,内容包括概念、重点、基本解法与数学思想、易出错点与其他知识联接点等,待第一轮复习后,花大概两天的功夫将这些小网络并成大网络,在以后的复习中不断对这个网络补充,加深印象。

  我想,经过了这样的三步曲,我们的数学理论知识就会得到大大的提高,加上不断地解题实践,我们的思维就会活跃,自信心就会增强,每次考试前回想一下网络,我们就会胸有成足地去面对考试,走向胜利!

高中数学学习方法13

  数学是一门讲理的学科,具有很强的逻辑性。初中、高中学习的数学都叫做初等数学,是高等数学的基础。而相对于初中数学来说,高中数学明显难了很多。因此,很多原本在初中数学成绩很好的同学,到了高中就感到吃力了。针对高中数学特点,我特意总结了两大要素,供同学们参考。

  第一大要素:图是高中数学的生命线图是初等数学的生命线,能不能用图支撑思维活动是能否学好初等数学的关键。无论是几何还是代数,拿到题的第一件事都应该是画图。有的时候,一些简单题只要把图画出来,答案就直接出来了。遇到难题时就更应该画图,图可以清楚地呈现出已知条件。而且解难题时至少一问画一个图,这样看起来清晰,做题的时候也好捋顺思路。首先要在脑中有画图的意识,形成条件反射,拿到一道数学题就先画图。而且要有用图的意识,画了图而不用,等于没画。有了画图、用图的意识后,要具备画图的技能。有人说,画图还不简单啊,学数学有谁不会画图啊。还真不要小看这一点。很多同学画图没有好习惯,不会用画图工具。圆规、尺子不会用,画出图来非常难看。不是要求大家把图画的多漂亮,而是清晰、干净、准确,这样才会对做题有帮助。改正一下自己在画图时的一些坏习惯,就能提高画图的能力。最重要的,也是高中生最需要培养的就是解图能力。就是根据给定图形能否提炼出更多有用信息;反之亦然,根据已知条件能否画出准确图形。现在高考中会出现数学实验题,这是新课标的产物,就是为了考验学生的综合能力。题虽然新,但只要细心分析就会发现,其实解题运用的知识都是你学过的。高考题是非常严谨的,出题不可能超出教学大纲。

  第二大要素:考后总结老师、家长在学生考试后总是关注学生成绩于上一次考试比有怎样的区别。学生们也总是在没考好时找各种理由,无论是为了安慰自己还是安慰老师和家长。家长们在看到孩子成绩下降后不要过分紧张,只要让学生养成一个很好的考试习惯,不愁成绩上不去。学生在考试后应该总结以下三个问题:

  第一,这次考试中有什么优点值得表扬。这是自我肯定的过程,太多的人让学生总结丢分原因了,却忽略了除了丢的分,学生还得到了很多分呢。学生要客观分析得分情况,哪些分是靠自己扎实的知识和解题的技巧轻松拿到手的;哪些分是脑中有大概印象再加一点运气成分拿到手的。不管是怎样拿到的,只要是得分了,就值得表扬。

  第二,自己还有哪方面问题。在肯定自己优点的时候要客观,分析问题的时候更要客观。很多学生喜欢说一句话“我马虎了,不小心算错了。”我相信,这是实话,但是同学们有没有想过为什么马虎?其实究其根源是计算能力不过关。这是小学算术没学好,我没有办法。计算也是一种能力,需要学生反复训练才能得到的一种能力。发现问题,针对自己的问题制定相应训练,防止下一次考试时再在同一个问题上丢分。

  第三,总结心理。心理因素也是影响考试成绩的一部分,例如此次考试是全年级打乱顺序,学生坐在陌生的教室中考试感到紧张,这就有可能影响考试的发挥。这种问题不是发现后短时间就能解决的。要知道,高考时不止是打乱班级顺序的问题了,你可能到一个你根本没去过的学校参加考试,身边的坐的同学是你认识的可能性几乎为零。所以,学生要学会自我调整,不要让这些客观外在条件影响考试水平的发挥。还是那句话,数学是讲理的学科,做完题后想一想,你这样做是不是有道理。数学有三种表现形式,汉语言文字、符号语言和图形。如果能把数学的这三中表现形式在思维中统一起来,那就说明在你脑海中已经形成了数学思维。在学习数学的过程中要学会听、看、画、写、算,充分利用各种感官,架构数学思维,才能够学好高中数学。

高中数学学习方法14

  一、知识特点的差异与变化

  数学语言在抽象程度上突变;不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很难理解.确实,初高中的数学语言有着显著的区别.初中的数学主要是以形象、通俗的语言方式进行表达.而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等.

  思维方法向理性层次跃迁;高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同.初中阶段,很多老师为学生将各种题建立了统一的思维模式,分别确定了各自的思维套路.因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了更高要求.当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降.高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维.

  知识内容剧增;初中数学知识少、浅、难度容易、知识面窄.高中数学知识广泛,是对初中的数学知识推广和引伸,也是对初中数学知识的完善.

  二、学习方法与学习状态

  学习习惯因依赖心理而滞后.初中生在学习上的依赖心理是很明显的.第一,为提高分数,初中数学教学中教师将各种题型形成套路,学生依赖于教师为其提供套路;第二,父母盼子成材心切,回家后辅导也是常事.升入高中后,教师的教学方法变了,套路没有了,家长辅导的能力跟不上了,由“参与学习”转入“督促学习”.许多同学进入高中后,还象以前那样,跟随老师的这指挥棒运转,没有掌握学习的主动权.表现为无计划,等上课,课前不预习,对老师要上课的内容不深刻理解,课堂忙记笔记,没听到分析,不会巩固所学的知识.

  思想松懈.有些同学把初中的那一套搬迁到高中来.他们认为自已在初中时并没有用功学习,只是在中考前努力了几个月就轻而易举地考上了高中,而且有的可能还是尖子班,因而认为读高中也不过如此,初始阶段根本就用不着那么用功,只要等到高考前努力几个月,也一样会考上一所理想的大学的.存有这种思想的同学是大错而后特错的.因为目前中考题目并不具有很明显的选拨性,同学们都很容易考得高分.但高考就不同了,目前我们国家的优秀大学还十分有限,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋几个月就考上大学,那到头来你会后悔莫及的.同学们不妨打听打听现在的高三,有多少同学就是因为开始时不努力学习,临近高考了,发现自己缺漏了很多知识而焦急得到处请教.

  学不得法.老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学上课根本不听,自己另搞一套,结果是事倍功半,收效甚微.

  不重视基础.一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,好高骛远,重“量”轻“质”,陷入题海.到正规作业或考试中不是演算出错就是中途卡壳.

  进一步学习条件不具备.高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备.高中数学很多地方难度大、方法新、分析能力要求高.如根分布与含参变量的讨论,空间概念的形成,二次函数值域的求法,三角公式的变形与灵活运用,排列组合应用题及实际应用问题等.有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求.

  三、明确的学习目的与科学的学习措施

  高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩.

  良好的学习兴趣;古人说过:“知之者不如好之者,好之者不如乐之者.”即说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中.“好”和“乐”就是愿意学,喜欢学,这就是兴趣.兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性.在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者.那么如何才能建立好的学习数学兴趣呢?制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力.但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志.课前自学,对所学知识产生疑问,产生好奇心.自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上.听课中要配合老师讲课,满足感官的兴奋性.听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力.及时复习是高效率学习的重要一环.通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”.独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程.这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”.解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程.解决疑难一定要有锲而不舍的精神.做错的作业再做一遍.对错误的地方没弄清楚要反复思考.实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”.把概念回归自然.所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、平面坐标系的的产生都是从实际生活中抽象出来的.只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确.

  建立良好的学习数学习惯.习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要.建立良好的学习数学习惯,会使自己学习感到有序而轻松.高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用.学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中.另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力.最重要的是,同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的.为什么高中要学几年而不是几天!许多许多的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度.

  有意识培养自己的各方面能力;数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力.这些能力是在不同的数学学习环境中得到培养的.在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,例如数学第二课堂、数学竞赛、智力竞赛等活动.平时注意观察,譬如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理.其它能力的培养都必须学习、理解、训练、应用中得到发展.特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”,对习题的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,为数学能力的培养开设好各种课型,在这些课型中,学生务必全身心投入、全方位智力参与,最终达到各方面能力的全面发展与提升.

  四、学好数学的基本要求

  记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识.建立数学纠错本.把平时容易出现错误的知识或推理记载下来,以防再犯.争取做到:找错、析错、改错、防错.达到能从反面入手,深入理解正确东西;能由果索因,把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密.记忆数学规律和数学小结论.与同学建立好关系,争做“老师”,组成数学互助组.争做数学课外题,加大自学力度.反复巩固,消灭前学后忘.学会自主学习.

  总之,阅读、观察、思维、记忆、练习等方法是相互联系、相辅相成的,缺一不可.只要我们在教学中能依据学生实际,结合教材特点及教学大纲的要求,遵循教学规律和认识规律,创造有利于指导学生形成科学学习方法的情境,就会使各个环节的指导适合学生的学习,使学生不断改进和完善自己的学习方法.只有学生想学、会学、乐学,才能把书本知识转化为自己的知识,再把理论知识转化为解决实际问题的能力,也才能大面积提高数学教学质量.并且我们应该永远牢记这样一句话:“兴趣和信心是学好数学的最好的老师!”

高中数学学习方法15

  数学理论中认为,知识并不能简单地由教师或其他人传授给学生,老师只是引导者,学生才是真正的学习者。学生而只能由每个学生依据自身已有的知识和经验主动地建构;同时,让学生有更多的机会去论及自己的思想,与同学进行充分的交流,学会如何去聆听别人的意见并作出适当的评价,有利于促进学生的自我意识和自我反省。从而,数学素质教育中教师的作用就不应被看成“知识数学素质教育中教师的作用就不应被看成“知识的授予者”,而应成为学生学习活动的促进者、启发者、质疑者和示范者,充分发挥“导向”作用,真正体现“学生是主体,教师是主导”的教育思想。

  全面推进数学素质教育,使学生成为积极的探索者、思考者,必须重视学生“学”的过程,抓好学生数学学习中的“读、听、讲、写、用”

  一.数学学习中的“听””,主要指听课,它是学生获取知识的重要环节,也是学生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。

  1听老师上课主要是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析、发挥时的每一句话,更要抓住重点,听好关键性的步骤,概括性的叙述。特别是自己读教材时发现或产生的疑难问题。

  2听同学发言倾听和接受他人的数学思想和方法,不仅是听老师上课,也包括听同学的发言。同学间的思想交流更能引起共鸣。

  从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。

  二.学习中的“读”现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础当是会“读”,包括:

  1读教材是学生学习数学的主要材料,它是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,具有极高的阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。

  2读书刊除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。

  数学学习中的“读”,不同于读小说书,常需纸笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。

  “读、听、讲、写、用在数学学习中是非常重要的,一定要把握这几种方法。

【高中数学学习方法】相关文章:

高中数学的学习方法11-05

关于高中数学的学习方法11-30

高中数学的高效学习方法11-29

高中数学的学习方法参考12-12

高中数学的学习方法介绍10-23

高中数学优秀学习方法01-15

高中数学的学习方法与技巧12-04

高中数学的学习方法简介12-09

高中数学高效学习方法11-19

高中数学的学习方法必看12-30