初中数学的学习方法

时间:2022-11-18 12:54:37 学习方法 我要投稿

初中数学的学习方法(通用15篇)

  在平平淡淡的学习、工作、生活中,每个阶段都有需要学习的内容,不过,学习不是死读书,而要讲究方法的。你知道都有哪些学方法吗?下面是小编收集整理的初中数学的学习方法,仅供参考,希望能够帮助到大家。

初中数学的学习方法(通用15篇)

初中数学的学习方法1

  素质教育以培养创新精神和实践能力为目标,数学教学要实现这一目标,首先要解决学生数学能力的培养,而数学能力的核心是数学思维能力。正是如此,每位数学教师在进行课堂教学时,或多或少,或自觉或不自觉地总要设计一些问题,启发引导学生去思维。我们知道,数学思维教学必须全面考虑,依据不同的教材内容和不同课型的内在联系,提出不同的问题,从而多方面地培养学生的思维能力,提高学生良好的思维品质。下面本人根据多年来的教学实践,谈谈课堂问题设计与思维能力培养的关系。

  一、设计发散型问题,培养学生的灵活思维能力

  教学实践表明,学生思维能力的灵活程度与学生的发散思维水平密切相关。在日常教学中我们不难发现,优等生可以从同一道试题的题意产生出不同的假象,然后就每一种假想进行合理的思维推理,一旦思维受阻就无所事从,放弃解答。为此就要求我们教师在教学中必须适时合理且经常地设计发散型问题,引导学生多角度、多方面地思考问题。

  数学可供设计发散式问题的内容比比皆是,只要我们能充分挖掘教材的内在联系,发挥自身的优势,就能很好地培养学生思维的灵活能力。

  二、设计互变型问题,培养学生的逆向思维能力

  通常评价一位学生思维灵活与否,其主要的判别条件之一,是考察学生逆向思维能力强不强。逆向思维是从对立的角度去考虑问题,也就是通常所说的:“反过来想一想”。初中教材中定义、公式、法则、图像等通常是按照正向思维方式给出,学生在学习中习惯于这种正向思维,而不习惯逆向思维,这就容易造成学生知识结构的缺陷,造成思维方法上的刻板僵化。所以在教学中,对于每一节教学内容,在向学生进行一定程度的正向思维训练后,应根据学情在教学的各层、各阶段中,适时地设计有一定梯度的互变式问题,培养学生的逆向思维能力。

  三、设计陷阱式问题,培养学生的批判思维能力

  没有批判就没有创新,因此培养学生的批判能力是我们教师义不容辞的责任。教学实践证明,适时地设计一些陷阱式问题,有利于培养学生的批判思维。这类题是为突破消极思维定势而有意设下的陷阱,使题型与方法错位,诱使学生“上当”、“中计”,从而使学生在失败中吸取教训,在“上当”、“中计”后幡然悔悟。在醒悟境界中学生会变得越来越聪明,思考问题越来越深刻,思维批判能力也就随之而生了。

  四、设计变角型问题,培养学生的概括思维能力

  变角式问题是指从同一事理的.不同角度去提出问题,它与培养学生的概括思维能力密切相关。

  设计变角式问题进行的训练,可以暴露问题,从而进行追根求源,防止思维定势的负迁移,克服思维的呆板性,提高学生的概括能力。

  例如:农机厂职工到距工厂15千米的生产队检修农机,一部分人骑自行车先走,40分钟后,其余人乘汽车出发,结果同时到达。已知汽车的速度是自行车的3倍,求两种车的速度。当学生解完此题后,可变换角度提出下面的问题,让学生分析思考它们之间有何关系?

  变式:甲、乙两人各做15个零件,甲先做40分钟后,乙才开始做,由于乙的工作效率是甲的3倍,结果两人同时完成了任务,求两人每小时各加工几个零件?

  从表面上看来,它们分别是行程问题和工程问题,学生通过分析比较会发现,从某种意义上讲,距离就是工作总量,速度就是工作效率,因而行程问题和工程问题有着本质的联系,并能由此推及其它与这相关的数学问题的解答。

  五、设计探究型问题,培养学生的创造思维能力

  探究式问题是指做完一道习题后,保持已知条件不变,探究能否得出更深刻的结论;或改变命题条件、结论的若干元素,组成新型的逆向的或更一般性的、高一层的命题,并探究它的正确性,这对于培养学生的锲而不舍精神和创新思维能力大有好处。

  六、设计开放型问题,培养学生的缜密思维能力

  缜密思维要求考虑问题全面,周密而不遗漏。数学教学中若能注重这方面能力的培养,不仅有助于学生提高数学能力,而且有益于学生严谨品格的培养。

  数学教学中,我们常发现有的学生分析解决问题时,要么思路不清晰、考虑问题欠周密,导致解题不严密。教学实践证明,适时地设计一些开放型问题,有利于培养学生的缜密思维能力。

  例如:解关于X的方程abx2-(a2+b2)x+ab=0,学生的通常解法是直接采用十字相乘法求得方程的两个根,而忽略了“当a=0,b≠0时及a≠0,b=0时原方程变为一次方程”的情况。因此为了提高学生合理分类,全面讨论问题的能力,从而防止“解”不完备,除了多进行实例教学外,还要结合教材设计一些开放式问题对学生进行针对性的训练,以便加强学生思维的纵向延伸于横向交流,使思考问题到达全面、深刻。

  综上所述,课堂问题的设计直接或间接决定着学生思维能力的培养,而各种思维能力的发展是相辅相成、不容分割的。因此,必须根据学生的认知基础、智力发展规律、教学内容的特点和内在联系,综合平衡,精心设计课堂问题,全方位地培养学生的思维能力,提高学生的思维品质。

初中数学的学习方法2

  数学作业是在复习的基础上独立完成的,能检查出对所学数学知识的掌握程度,能检测出能力水平,所以它对于发现存在的问题,及时采取措施加以解决,有着重要的作用。一般,当做作业感到困难,或做错的题目较多时,往往标志着知识的理解与掌握上存在缺陷或问题,应引起警觉,需及早查明原因,予以解决。

  数学作业通常表现为解题,解题要运用所学的知识和方法,在做作业前需要先复习,在基本理解所学内容的基础上进行,否则事倍功半,花费了时间,得不到应有的效果。解题,要按一定的程序,步骤进行。

  首先,要弄清题意,认真读题,仔细理解题意。

  如哪些是已知的数据,条件,哪些是未知数,结论,题中涉及到哪些运算,它们相互之间是怎样联系的,能否用图表示出来等,要详加推敲,彻底弄清。

  其次,在弄清题意的'基础上,探索解题的途径,找出已知与未知,条件与结论之间的联系。

  回忆与之有关的知识和方法,学过的例题,解过的题目等,并从形式到内容,从已知数,条件到未知数,结论,考虑能否利用它们的结果或方法;是否能找出与该题有关的一个类似问题,考察解决它们对当前问题有什么启发等等。就是说,在解题过程中,需要运用对比,特殊化,一般化,分析,综合等一系列方法,从解题中学会这一系列探索的方法。在探索解题方法中也是培养能力的一个极好机会。

  第三,根据探索得到的解题方案,做到书写格式要规范、条理要清楚,把解题过程叙述出来,并力求简单,明白,完整。

  在作业书写方面也应注意“写法”,同学们刚开始做到这点很困难,我们应该在老师的指导下逐步学会(1)如何将文字语言转化为符号语言;(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。

初中数学的学习方法3

  一、记忆——是基础

  数学虽不像语文、英语那样要背很多东西,但同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“九九乘法表”,你能顺利地进行运算吗?所以,数学中的定义、法则、公式、定理要先了然于心。数学就像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。所以,记不住数学的定义、法则、公式、定理就谈不上学数学。

  二、审题——是关键

  每次数学考试后,让同学们总结反思,几乎每个同学都会提到——“粗心”,这个毛病总阴魂不散地缠着每个同学。这个毛病的症结,很大部分其实是出在“审题”这一环节。审题和做题相比较,我建议你审题要慢,做题要快。对于信息量较大的题目可通过“指读”迫使自己慢下来,必要时可以划线,边读边在图形处标记,深化对题意的认识和理解。审题中,一审条件与目标、再审挖掘隐含信息、三审联系与转化、四审遗漏的条件和数据。如果你能在审题上严加把关,那“粗心”的毛病肯定会和你渐行渐远的。

  三、分析——是核心

  很多同学学习数学的苦恼是——明明老师上课讲的我都懂,但为什么题目一拿过来还是不会做。其实,课堂上,有的学生的“懂”只是懂得了解题的每一步,是在教师讲解下的懂,因为想不到的地方,老师讲课时有提示、有引导,能想起来,认为自己懂了。同样的问题,没有老师的提示就想不起来,说明学生的“懂”不是真“懂”。

  美国著名数学教育学家波利亚先生说过:“学生学习任何东西的最好途径是自己发现。”此话一针见血地指出,学习如果过分地依赖传授者,那么,尽管教师讲得很透彻,但学生所学到的只是停留在表面上的知识,谈不上能力的培养和提高;只有借助别人的点拨,依靠自己分析、归纳、总结、探索而获得的知识,才能成为自己的知识,且能培养学习的能力。

  所以,在数学的'学习中我的建议是——“听一遍不如看一遍,看一遍不如做一遍,做一遍不如讲一遍,讲一遍不如辩一辩”。

  四、总结——是提升

  数学题目是无限的,但数学的思想和方法却是有限的。一个善于学习的人,一定是个善于总结的人。首先要学会总结解法,一题多解,其实就是在一道题目中复习了更多的知识点。其次,要总结题型,类型化的题型接触多了,由量变引起质变,遇到此类问题自然迎刃而解。第三,要善于总结错误。不夸张地说,每个学霸都有一本自己的错题集。错题集要经常阅读,也可以互相交流错题集,从别人的错误中吸取教训,得到启发,这是个事半功倍的好方法。

初中数学的学习方法4

  数学是研究数量结构、变化、以及空间模型等概念的科学.它是物理、化学等学科的基础,而且与我们的生活息息相关.所以说,学好数学对于我们每个同学来说都是非常重要的。初中阶段,我们就逐渐开始接触比较难的数学知识了,但是这个过程是循序渐进的,所以只要一步一步的学好每一阶段的知识,学好数学是并不难的。

  进入初中后,在数学课的平时学习中,要做到以下几点,能够保证将所学的知识掌握牢固。

  课前认真预习.预习的目的是为了能更好得听老师讲课,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题

  1.预习还可以使听课的`整体效率提高.

  具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完。

  2.让数学课学与练结合.

  在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”。

  3.课后及时复习.

  写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课。

  4.单元测验是为了检测近期的学习情况.

  其实分数代表的是你的过去,关键的是对于每次考试的总结和吸取教训,是为了让你在期中、期末考得更好.老师经常会在没通知的情况下进行考试,所以要及时做到“课后复习”。

  期中期末阶段的学习中要将平时的单元检测卷整理整齐,并且将错题再做一遍.如果整张试卷考得都不好,那么可以复印将试卷重做一遍.除试卷外,还可以将作业上的错题、难题、易错题重做一遍。

  如果想得高分,在选择、填空、计算题上是不能丢分的。在考数学的时候思想不能开小差,而且遇到难题时不能想“没考好怎么办啊”等内容。在通常情况下,期末考试的难题都是不知道怎么做,但有可能突然明白的那种。遇到这种题目要沉着冷静,利用题目给你的一切条件进行分析。在期中、期末考试中有充足的时间,将自己的速度压下来,不是越快越好,争取一次做成功.大概留35分钟的时间检查。

  最终提醒大家:多做题有一定作用,但上课听讲、认真答题及提高准确率、总结经验才是最重要的。还要将所学的知识用到生活中去,做到学以致用。当你运用数学知识解决了生活中实际问题的时候,你就会感受到学习数学的快乐。

初中数学的学习方法5

  要想取得好成绩,一个科学的数学学习方法是十分重要的。那么,科学的学习方法在课内课外需要注意些什么呢?

  最重要莫过于善于思考,思考是数学学习方法的核心。在学这门课中,思考有重大意义。解数学题时,首先要观察、分析、思考。思考往往能发现题目的特点,找出解题的突破口、简便的解题方法。在我们周围,凡是真正学得好的同学,都有勤于思考,经常开动脑筋的习惯,于是脑子就越用越灵,勤于思考变成了善于思考。其次,培养创造精神也十分重要,所谓创造,就是想出新办法,做出新成绩,建立新理论。创造,就要不局限于老师、课本讲的方法。平时,有一些难度高的题目,在听懂了老师讲的方法后,还要自己去找一找有没有另外的解法,这样能加深对题目的理解,能比较几种解法的利弊,使解题思维达到一个更高的`境界。 当然,你要把以上那些东西做好,没有扎实的基础是不行的,所以,你必须先做到以下几点:

  第一,认真听老师讲课。这是取得好成绩的主要原因。听讲时要做到全神贯注,聚精会神,跟着老师的思路走,不能开小差。

  其次要专心凝听老师讲的每一个字,因为数学是以严谨著称的,一字之差就非同小可。听讲时还要注意记笔记。上课还要积极举手发言,举手发言的好处可不少!

  1可以巩固当堂学到的知识。

  2锻炼了自己的口才。

  3那些模糊不清的观念和错误能得到老师的指教。真是一举三得。

  总之,听讲要做到手到、口到、眼到、耳到、心到。、 在做家庭作业时,要注意解题的精度和速度。精度就是准确度,专心致志地独立完成作业,力求一次性准确,而一旦有了错,要及时改正。而速度是为了锻炼自己注意力集中,有紧迫感。经常这样做,在开始做作业时定好闹钟,放在自己看不见的地方再做作业,这样有助于提高作业速度。考试时,就不会紧张了。

  如果课余有多余时间的话,则应当多做做课外练习。孔子曰:“学而时习之,不亦乐乎”。 做这类题,尽可能自己独立思考,努力找出隐藏的条件,这是解题的关键。如果实在想不出来就需要看一看参考书,以及请教家长和老师。总之,要做到多看、多做、多问、虚心、勤奋,保持积极向上的精神这才是关键的关键。

初中数学的学习方法6

  自信才能自强

  在考试中,总是看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。

  具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件。一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的.特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画瓢,题目有些小的变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,条条大路通北京。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。

  数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完。关键是你有没有培养起良好的数学思维习惯,有没有掌握正确的数学解题方法。当然,题目做得多也有若干好处:一是“熟能生巧”,加快速度,节省时间,这一点在考试时间有限时显得很重要;一是利用做题来巩固、记忆所学的定义、定理、法则、公式,形成良性循环。

  初中温馨建议:只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习。

初中数学的学习方法7

  二元一次方程(组)

  1、二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  2、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  3、二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  4、二元一次方程组的解法。

  (1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法。

  (2)加减消元法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法。

  提醒大家:二元一次方程组的解法包括代人消元法和加减消元法。

  初中数学知识点总结:平面直角坐标系

  下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

  平面直角坐标系

  平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

  水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的`原点。

  平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

  三个规定:

  ①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

  ②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

  ③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

  相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

  初中数学知识点:平面直角坐标系的构成

  对于平面直角坐标系的构成内容,下面我们一起来学习哦。

  平面直角坐标系的构成

  在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

  通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。

  初中数学知识点:点的坐标的性质

  下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。

  点的坐标的性质

  建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

  对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

  一个点在不同的象限或坐标轴上,点的坐标不一样。

  希望上面对点的坐标的性质知识讲解学习,同学们都能很好的掌握,相信同学们会在考试中取得优异成绩的。

  初中数学知识点:因式分解的一般步骤

  关于数学中因式分解的一般步骤内容学习,我们做下面的知识讲解。

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  相信上面对因式分解的一般步骤知识的内容讲解学习,同学们已经能很好的掌握了吧,希望同学们会考出好成绩。

  初中数学知识点:因式分解

  下面是对数学中因式分解内容的知识讲解,希望同学们认真学习。

  因式分解

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初中数学的学习方法8

  学习初中数学的方法之多做练习

  要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题。

  多做练习

  我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的'知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。

  必须熟悉各种基本题型并掌握其解法。课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。

  在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。

  多做综合题。综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。

  温馨提示:“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

初中数学的学习方法9

  1.自信才能自强

  在考试中,很多学生一碰到稍微复杂的题就不敢动手去做,我认为这是缺乏自信的表现。

  解题需要丰富的知识更需要自信心,要相信自己,只要不是超出知识范畴就一定可以用自己学过的知识把它解出来,要敢于解题!善于解题!

  2.该记的记,该背的背,不要以为理解了就行

  我觉得数学像是一场游戏,只是它有很多游戏规则,谁记住并运用了规则,谁就能顺利做游戏并取得胜利,谁违反了游戏规则谁就会被判错。

  因此,数学的定义、法则、公式、定理等一定要熟记,然后在应用的过程中再加深理解。

  3.掌握重要的数学思想

  初中时需要掌握的'数学思想主要有“方程思想”、“数形结合思想”、“对应思想”等,辅以一定的方法、技巧和敏捷的思维,就能在学习数学过程中更加得心应手。

  4.自学能力的培养是深化学习的必由之路

  很多学生学习依赖性太强,这很不利于学习,我认为我们学习,不仅是要学习新知识,更重要的是学习数学思维,要以一种探究式的态度去听课,逐步培养起自己对数学的一种悟性,而自学能力越强,悟性就越高。

初中数学的学习方法10

  作为教育工作者,对待学生学习上的问题,处理问题的心态与家长有所不同,家长由于亲情关系,容易急燥,然而对待学习和成长方面的问题,急燥是不解决问题的,必须要有科学的方式、方法和教育手段,引导学生解决这些学习中的问题。

  数学有一个特点是重要、枯燥。重要是显而易见的,数学作为基础学科,高考、中考都考数学;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学学习当中的技巧性问题和心理问题。当然不可能人人都能把数学学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力…..各人的倾向性不一样,擅长的方面也各不相同,对数学能达到的层次也会参差不齐,但有一点,数学的一些基本要求一定要掌握,例如数学中的一些基本原理、数学方法不能有半点马虎。因为无论将来我们从事什么行业,数学作为一种基本的处理事物的方法都非常重要。一般的孩子只要通过正确的方法,正确的引导都能够达到。

  一、数学中关于概念的问题

  概念的形成需要一个过程。与人生哲理等概念不同,数学概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学中的一个根本问题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的一个阶段。

  概念具有长期性。每个概念都有一个失败—再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。

  概念是随着一个人知识的增加而不断深入的。学数学对一个人建立完整的思维方式很重要,随着对不同数学概念的深入理解,人们处理问题的方式可以越来越趋于严谨。

  要建立一个数学的概念网。数学是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清析的脉络。

  从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学末学深入。

  二、运算能力:

  符号化、模式化是数学的一大特点,对这点我们应该有深刻的认识。

  1、模式化。数学的一些定理、原理、公理都有一定的模式,“因为即最简单的一种模式,对各种数学模式的.理解认识也是对人的逻辑思维能力的训练。

  2、符号化。数学的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数学就是符号游戏,我们对符号必须精通,才能进行迅速变形。

  中学阶段有几个重要的定理:三垂线定理、正余弦定理、根与系数的关系、二次三项式定理。对这几个定理的运用必须熟练掌握。

  三、做题技巧:

  从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。

  做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,因为高考中有难题,平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。

  做题要留体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的相互融合,就实现了对新、旧知识的最新体会。

初中数学的学习方法11

  初二数学学习方法技巧

  要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。

  (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。

  (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。

  (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。

  (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。

  (5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。

  (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。

  初一数学复习方法

  代数初步知识

  1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式。

  2.几个重要的代数式:(m、n表示整数)

  (1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;

  (2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;

  (3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;

  (4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.

  有理数

  凡能写成q/p(p,q为整数且p≠0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0既不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  有理数加法的运算律:

  (1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).

  有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac.

  有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数。

  整式的加减

  单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

  单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

  多项式:几个单项式的和叫多项式.

  多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

  整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

  一元一次方程

  一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

  一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).

  一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).

  一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).

  列方程解应用题的常用公式:

  (1)行程问题:距离=速度·时间;

  (2)工程问题:工作量=工效·工时;

  (3)比率问题:部分=全体·比率;

  (4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;

  (5)商品价格问题:售价=定价·折·0.1,利润=售价-成本;

  (6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=1/3πR2h.

  初三数学的特点和学习方法

  上课。课前准备好上课所需的课本、笔记本和其他文具,并抓紧时间简要回忆和复习上节课所学的内容。要带着强烈的求知欲上课,希望在课上能向老师学到新知识,解决新问题。上课时要集中精力听讲,上课铃一响,就应立即进入积极的学习状态,有意识地排除分散注意力的'各种因素。听课要抬头,眼睛盯着老师的一举一动,专心致志聆听老师的每一句话。要紧紧抓住老师的思路,注意老师叙述问题的逻辑性,问题是怎样提出来的,以及分析问题和解决问题的方法步骤。上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。

  上课听讲很重要,45分钟要实效:你不要以为我在开玩笑,上课听讲谁还不会啊!其实并不然,我说的听讲则是完完全全、认认真真、仔仔细细……来听讲。对于课堂上老师所讲的每一个公式,每一条定理都要深究其源,这样即便在考试当中忘了公式,也可以很好的解决问题,不至于内心的慌乱和紧张。另外要充分利用好课堂这短短的45分钟的时间,尽量在课上将所学习的知识吸收,这样回到家后才能进一步展开接下来的学习,节约时间。

初中数学的学习方法12

  20xx年北京小升初已经过去,即将迎来初中学习的同学们准备好了吗?初中数学对于以后的物理化学学习有着很重要的作用,下面为大家说一说初一、初二、初三的数学学学都应该注重哪些方面,希望对大家有所帮助。

  做好小学到初中的顺利衔接

  有些家长觉得:初中有三年时间,初一可以好好放松一下“初一不必太紧张,中考初二、初三再准备也不晚”。而现实的情况是,60%小学非常优秀的同学在初一已经失去了领先的优势,究其原因还是由于初中学习和小学学习的巨大差异引起!

  初中数学特点:初一数学知识点多,初二数学难点多,初三数学考点多。

  可以说,初一阶段的数学学习是中学数学的基础,而数学又是所有理科学习的基础学科。由此可见,能否学好初一数学关系到学生整个初中阶段的理科学习质量。

  如何保持初中学习状态

  家长:女儿今年上初一,小学成绩还不错,但数学稍差,初中学习强度加大,如何保持良好的学习状态?

  武珞路中学优秀班主任胡学彦:初一是小学和初中很重要的过渡阶段,无论是家长还是孩子,都需要对心理进行调试。如不能在这个阶段把握时机,及时调整,可能会很难赶上。

  首先,家长要尽快转变思维方式,对数学中的相关概念和定理,要反复推敲,每一个步骤需要有相应的严格的证明和逻辑推理。

  其次,在掌握好基础内容的前提下,能对相关的题目提出相应的创新性的解法。

  最后,要逐渐培养自己的自学能力和归纳总结能力,学过一部分内容,对相关的概念和定理作相应的归纳,形成自己的观点和认识,初中政治,提高解决综合问题的能力。

  家长还要让孩子保持良好的学习状态,需要锻炼抗挫折和独立面对问题的能力。还要多跟同学和老师交流,分享自己的想法,及时调整自己的学习方式,适应初中生活。

  掌握好的学习方法非常重要

  对于初一的`学生们来说,升入中学后的一个最要紧的问题,是如何顺利做好初小衔接的过渡。如今,开学已经两个多月了,同学们应该已经初步适应了初中生活。我个人认为,同学们应首先解决的是作息时间问题,在小学,多数同学养成了晚上9:00前睡觉,早晨7:00左右起床的习惯,而升入中学后,同学们需要养成晚9:30左右睡觉,早晨6:00左右起床的习惯,因此,同学们需要尽快适应,合理安排自己的作息时间。

  上课认真听讲,提高课堂效率,是学习好的前提和保障。在我看来,这是一种最重要也是最有效的学习方法。学习好的同学都有一个共同特点,那就是上课精力非常集中,决不放过老师所讲的每一句话,而不像有些同学,刚听了两句就觉着什么都听懂了,从而错过了很多重要的知识点,在做作业和考试时,有很多老师上课反复强调的知识点他们都做错了,这样一来,学习成绩自然也就不可能会好。上课还要养成记笔记的习惯,这些都是课堂上的重点,同时,记笔记还能帮助你认真听讲,因此,在课堂上记笔记还是很有必要的。

  课后要及时复习,认真完成作业,对当天所学的知识进行巩固。人脑毕竟不是电脑,总有个遗忘问题,而其,遗忘的基本规律是先快后慢,新学的东西在短期内遗忘的速度还是很快的,必须要及时、经常的进行复习,孔子云学而时习之,不亦悦乎温故而知新,可以为师矣,可见,复习对学习来说真的是很重要的。

  很多好同学都有课前预习的好习惯,这样,在上课听讲的时候,就更有针对性,有助于提高课堂听讲效率。每一章节学完之后,他们还能及时复习,从而能对所学知识有一个系统的认识。

  对数学这门学科来说,对概念的理解非常重要,切忌死记硬背。数学跟语文和英语不同,不需要背的一字不差,重在理解,只要意思对了,关键性的字词不错就可以了。明白了还要会用,这就需要多做题,加深理解,多见识一些题型,打好基础,提高能力,增强信心,要有恒心和毅力。对于学有余力的学生来说,决不能仅满足于课本上的那点东西,多做点课外题,甚至上;奥数班,来提高自己的能力,还是很有必要的。

  同学们在学习中难免会遇到难题,这对你来说是一笔宝贵的财富,一定要珍惜,首先要自己多动脑子,下功夫解决,当你通过努力,终于想通了以后,会有一种豁然开朗的感觉,你会体验到学习带来的乐趣,你的学习能力和自信心会得到很大的提升。如果自己实在是想不通,解决不了,就应主动和同学交流,共同探讨,或者直接向老师请教,有些时候,别人给你稍一点拨,你也会有一种豁然开朗的感觉。个人的能力毕竟是有限的,如果能发挥群体的力量,取他人之长补己之短,你会进步的快一些。

  好同学会合理安排自己的时间,讲求学习效率,决不拖拉,靠时间,同学们千万别有这样一个错误的认识:觉得在学习上花的时间越多,就显得越用功,效果就会越好,其实未必,效率才是最重要的。有些问题明明10分钟就可以解决,你非要靠上半个小时,那你的效率就实在是太低了,有些时候,在一个问题上花费的时间很长了,但就是没有想明白,甚至是一点头绪也没有,那就不妨就先放一下,先做别的题,等别的问题解决了,再回过头来做这道题,而有的时候确实学累了,觉着很疲劳,那就不妨先休息一下,总之,效率才是最重要的,不能靠时间,更不能拖拉,以寻求心理上的安慰。

  许多好同学手中都有一本错题集,专门收集自己在作业中和考试中做错的典型题目,并经常拿出来看,提醒自己以后别再犯,特别在考试前看一下,能给自己起一个很好的警示和提醒作用。

  好同学不害怕考试,在平日写作业和做练习时,他们会像对待考试一样对待它们,因此,考试对他们来说,就像是平日做作业和做练习一样,不会太紧张,从而能正常发挥自己的水平,甚至超水平发挥。每次考完试以后,他们都能及时总结和反思自己,找出学习上的漏洞,及时弥补。

  以上所说的学习方法因人而宜,不一定都适合你,可能你还有一些更适合自己的学习方法,只要你觉着是适合你的方法,对你来说就是最好的方法。

初中数学的学习方法13

  提倡学优生争当小老师,在帮助中差生学习中锻炼自己的思维。

  学优生既然在各方面表现都比较优秀,那么我们可以通过他们开展中差生的个别辅导工作,将学优生的优秀的学习经验和好的学习方法介绍给其他同学。我们可以将全班分成十多个小组,每一个小组由一个优生任小组长,这个小组长我们称为导生。导生是从学生中选拔出来的学习带头人,他既是学生,又要给别的同学当小老师,他自己既要带头学习,但又要帮助其他同学一起进步。

  导生也是我们教学改革中的先“富起来”的人,在班上,他们首先在老师的指导下明白了如何学习?懂得了如何看书,如何自学,如何听课,如何总结,如何预习,如何积极主动地去学,然后,他们又将这种学习经验教给其他同学,最终达到全班同学的共同进步的'目的。利用导生展开辅导、评比、讨论以及学习方法的互嗟活动,可以解决班级授课制的许多突出问题。此外,导生也在这些活动中得到锻炼,因为能够对一个问题进行顺利的讲解,可大大地加深印象,许多含糊的问题条理化清晰化了,对浅显的问题理解得更深刻了。

初中数学的学习方法14

  初中数学是一个整体。

  初二的难点最多,初三的考点最多。

  相对而言,初一数学知识点虽然很多,但都比较简单。

  很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。

  这里先列举一下在初一数学学习中经常出现的几个问题:1、对知识点的理解停留在一知半解的层次上;2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;3、解题时,小错误太多,始终不能完整的解决问题;4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。

  相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。

  那怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。

  例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。

  二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。

  这样就不能很好的将学到的知识点与解题联系起来。

  三是,一部分同学不重视对数学公式的记忆。

  记忆是理解的基础。

  如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。

  (2)总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。

  当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。

  这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。

  其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。

  久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。

  我们的建议是:“总结归纳”是将题目越做越少的最好法。

  (3)收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。

  但这恰恰又是最需要解决的问题。

  同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。

  另外一个就是,找出自己的不足,然后弥补它。

  这个不足,也包括两个方面,容易犯的错误和完全不会的内容。

  但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。

  我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。

  我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。

  (4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。

  这是很平常的道理。

  但就是这一点,很多同学都做不到。

  原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。

  抱着这样的'心态,学习任何东西都不可能学好。

  “闭门造车”只会让你的问题越来越多。

  知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。

  这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。

  直到无法赶上步伐。

  讨论是一种非常好的学习方法。

  一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。

  需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。

  我们的建议是:“勤学”是基础,“好问”是关键。

  (5)注重实战(考试)经验的培养考试本身就是一门学问。

  有些同学平时成绩很好,上课老师一提问,什么都会。

  课下做题也都会。

  可一到考试,成绩就不理想。

  出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。

  心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。

  每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。

  做题速度慢的问题,需要同学们在平时的做题中解决。

  自己平时做作业可以给自己限定时间,逐步提高效率。

  另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。

  我们的建议是:把“做作业”当成考试,把“考试”当成做作业。

  以上,我们就初一数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。

  任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。

初中数学的学习方法15

  学好初一数学的方法技巧

  1、做好预习:

  单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。

  2、认真听课:

  听课应包括听、思、记三个方面。

  听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。

  思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。

  记,指课堂笔记——记方法,记疑点,记要求,记注意点。

  3、认真解题:

  课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。

  4、及时纠错:

  课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。

  5、学会总结:

  冯老师说:“数学一环扣一环,知识间的联系非常紧密,阶段性总结,不仅能够起到复习巩固的作用,还能找到知识间的联系,做到了然于心,融会贯通。

  6、学会管理:

  管理好自己的笔记本,作业本,纠错本,还有做过的所有练习卷和测试卷。冯老师称,这可是大考复习时最有用的资料,千万不可疏忽。

  初二数学学习方法技巧

  1、配方法:

  所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的.是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

  2、因式分解法:

  因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

  3、换元法:

  换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理

  一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

  韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

  4、待定系数法:

  在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。

  初三数学复习方法及技巧

  一、深刻理解概念。

  概念是初三数学的基石,学习概念(包括定义、定理、性质与判定)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。多看一些例题。

  细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

  不能只看皮毛,不看内涵。

  我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。要把想和看结合起来。

  我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。

【初中数学的学习方法】相关文章:

初中数学的学习方法11-18

初中数学学习方法11-06

初中数学实用学习方法12-19

初中数学学习方法09-02

初中数学学习方法总结12-02

初中数学的学习方法15篇11-18

初中数学的学习方法(15篇)11-18

初中数学学习方法【荐】12-15

初中数学学习方法【热门】12-15

【热】初中数学学习方法12-15