数学学习方法总结
总结是对取得的成绩、存在的问题及得到的经验和教训等方面情况进行评价与描述的一种书面材料,他能够提升我们的书面表达能力,不如立即行动起来写一份总结吧。如何把总结做到重点突出呢?以下是小编为大家整理的数学学习方法总结,仅供参考,大家一起来看看吧。
数学学习方法总结1
学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。
一、正确对待学习中遇到的新困难和新问题
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
要提高自我调控的“适教”能力。一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
要养成良好的个性品质。要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
要养成良好的预习习惯,提高自学能力。课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
二、要养成良好的审题习惯,提高阅读能力
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
要养成良好的演算、验算习惯,提高运算能力。学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
要养成良好的解题习惯,提高自己的思维能力。数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
三、要养成纠错订正的习惯,提高自我评判能力
要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
要养成善于交流的习惯,提高表达能力。在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。15、要养成做笔记的习惯,提高理解力。为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
数学学习方法总结2
一、多看
主要是指认真阅读数学课本。把课本当成练习册。一般地,阅读可以分以下两个层次:
1、课前预习阅读。预习时,要将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批注。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2、课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。学习方法是灵活多样、因人而异的,能不断改进自己的学习方法,是你学习能力不断提高的表现。
数学学习方法总结3
天津奥数网 五年级是接触专题最多的时期,小学阶段的重要知识点和难点也都集中在这个阶段,专题的练习有助于知识点和难点的巩固和加强;真题的练习可以为你积累丰富的实战经验。
五年级的孩子可以尝试参加考试和比赛,获奖对于孩子来说是一个莫大的激励,能够促使他们在奥数学习上兴趣倍增,为以后取得更多的证书以及,奠定坚实的基础。
爬坡攻坚阶段
五年级是一个奥数学习的爬坡阶段。如果在这个阶段对奥数进行系统学习,哪怕之前都没怎么接触奥数的孩子,其数学成绩可能有很大幅度的提高。下面我就来说说刚刚接触奥数的同学该怎么学。
由简单入手
五年级是有余力进行额外学习的,但是如果之前没接触过奥数,那么还是从简单入手比较好。一则让孩子通过简单问题逐渐熟悉奥数,一则培养孩子的奥数兴趣,避免接触难题打消学习积极性。
要迅速过渡
五年级的学生是属于小学的高年级阶段,虽然是最初接触奥数,也不必按部就班的学。应该辅助一定的练习对几种类型题和专题进行深入分析了理解,掌握专题的解题思路,做到以点概面,迅速过渡到高年级奥数的学习。
制定学习计划
所谓系统学习,决不是拿过哪块来就学习哪块,必须要有一个合理的学习计划。通过一段时间简单的学习,家长应注意了解孩子的学习进度,帮助孩子制定一份大体的学习计划。然后严格按照计划进行系统学习。
重视基础
奥数是的竞争资本之一。其中大部分重点中学的奥数测试比较重视奥数的基础。而杯赛也基本都是在奥数基础上进行的延伸。所以不论是从的角度还是从提高自身能力的角度考虑,五年级学生都应该重视奥数基础部分。
量变到质变
学习到一定阶段之后,也要注重孩子思维方法的培养了,不能总是停留在解题这个阶段。要综合各个题型进行分析学习,通过知识的了解上升到方法的拓展,再到掌握方法举一反三,实现一个质的飞跃!
数学学习方法总结4
一、数学分析内容简介
数学分析内容有实数集与函数、数列极限函数极限、函数连续性、导数、微分等。书中内容大都以证明为主,计算部分较少。
二、课前预习
课本中每节的内容构架都是相似的,大都为引言、定理、定理的证明、例题、课后习题。了解了构架。那么我们就应该预习重点部分,在时间充足的的情况下,再看其他未看内容。
引言,不重要,可以浏览一下,也可以不看;定理,是核心的内容,不仅看而且要详细的记住它,所谓详细的记住是指:把定理的条件不要记错,这个对证明很有用;接下来是证明,证明影响你对定理的理解程度和运用的熟练程度。可先了解证明思路证明中的计算可以忽略,这样在老师的讲解下就可以明白;最后是例题和习题,例题是对定理最简单最贴切的应用,所以课前掌握最好,习题可看可不看。
三、记录笔记
在紧张的课堂学习中,要记好自己的笔记让它清晰工整是不容易的。因为你还在用心听老师讲课,所以要有方法。
首先,学会省略。减轻课堂负担,在课后补充。比如:定理,你可以把定理的内容在课本上画下来,在笔记中留出空白。用这段时间理解并记忆定理。计算也可以省略,留到课下自己计算。
其次,学会缩写。在数学分析中,有很多符号语言,比如:∑(加和)∞(无穷大)∵(因为)th(定理)等。
最后,抓住重点记录。重点可以分为两部分:一部分是老师上课所说的重点部分,那一定是精华,所以不要错过;另一部分是自己不懂或难懂的部分,记录下来,课下反复思考,复习。
四、课后复习
课后复习要从两方面出发:
一方面是老师要求掌握的内容,这些内容是考试内容,对期末复习打下良好的基础。
另一方面是自己难以掌握的内容,这些内容是最容易忘记的也是应用熟练程度最差的。所以也要作为重点复习。
复习要有一定的周期性,不能本周看了,之后就让它冬眠,这样大脑会一片空白的。可以根据自己的记忆能力,一星期或两星期看一次。
五、读书方法
读书要有侧重点,数学分析中的定理,有的要着重看它的证明方法,他的方法是独特的,可以给自己以借鉴;有的要着重看定理的内容,它的定理应用,推广会更多一些;有的当做了解内容,因为它可能是为其它定理作铺垫的。
其中的例题一定要看,这个会是定理的浅显应用,对于初学者来说,能够为以后做难题提供思路和方法。
六、数学分析中的创新与应用
在创新方面,一般是定理推广,它的推广会被现实生活中应用的更加广泛。在应用方面,这个很多,一般是竞赛中的应用,比如数学建模。在计算机程序中也有很多应用。
学好数学分析,其天赋是一方面,另一方面就是自己的不断努力下所积累的做题经验和逻辑性思维。只有努力才有收获!
数学学习方法总结5
怎样学好初中数学
一、多看
主要是指认真阅读数学课本。许多同学没有养成这个习惯,把课本当成练习册;也有一部分同学不知怎么阅读,这是他们学不好数学的主要原因之一。一般地,阅读可以分以下三个层次:
1.课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2.课堂阅读。预习时,我们只对所要学的教材内容有了一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。
3.课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。
二、多想
主要是指养成思考的习惯,学会思考的方法。独立思考是学习数学必须具备的能力。
同学们在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做
主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。
四、多问
是指在学习过程中要善于发现和提出疑问,这是衡量一个学生学习是否有进步的重要标志之一。有经验的老师认为:能够发现和提出疑问的学生才更有希望获得学习的成功;反之,那种一问三不知,自己又提不出任何问题的学生,是无法学好数学的。那么,怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,不愿意动脑筋,不去思考,当然发现不了什么问题,也提不出疑问。发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。
初中数学学习方法有哪些
1.学好数学要抓住三个“基本”:基本的概念要清楚,基本的规律要熟悉,基本的方法要熟练。
2.做完题目后一定要认真总结,做到举一反三,这样,以后遇到同一类的问题是就不会花费太多的时间和精力了。
3.一定要全面了解数学概念,不能以偏概全。
4.学习概念的最终目的是能运用概念来解决具体问题,因此,要主动运用所学的数学概念来分析,解决有关的数学问题。
5.要掌握各种题型的解题方法,在练习中有意识的地去总结,慢慢地培养适合自己的分析习惯。
6.要主动提高综合分析问题的能力,借助文字阅读去分析理解。
7.在学习中,要有意识地注意知识的迁移,培养解决问题的能力。
8.要将所学知识贯穿在一起形成系统,我们可以运用类比联系法。
9.将各章节中的内容互相联系,不同章节之间互相类比,真正将前后知识融会贯通,连为一体,这样能帮助我们系统深刻地理解知识体系和内容。
10.在数学学习中可以利用口诀将相近的概念或规律进行比较,搞清楚它们的相同点,区别和联系,从而加深理解和记忆。弄清数学知识间的相互联系,透彻理解概念,知道其推导过程,使知识条理化,系统化。
初中生学习方法指导
掌握正确的学习方法,养成良好的学习习惯是学习成功的必经之路,与小学生相比,初中生的学习方法显得更加多样和复杂,学习内容的变化要求初中生做到:初中生学习方法指导
1、学会合理安排自己的学习时间,以免造成学习上的忙乱。
2、课堂上,要求学生认真听讲,学会记听课笔记。
3、随着学习内容的扩大加深,要求学生能够学会独立思考,对学习材料进行逻辑加工,做到学得活、记得牢、用得上。
数学学习方法总结6
高中生想要学好数学,提高数学成绩,就要学会在平时养成一个好的学习习惯。很多高中生对于习惯的培养往往不是很重视,甚至一些高中生会选择一边做数学题一边翻书看笔记,或是一边玩一边学习。
这样做对于数学成绩的提高,可以说是没有什么帮助的。建议高中生每天在做作业前,要先把课本相关的内容和笔记看一遍,然后再去写作业,这也是一个再学习的过程,对于成绩的提高也有一些帮助。
另外,现在很多高中生很努力的学习数学,但是成绩就是提高不上去,这很大程度上是因为一些高中生不懂得反思和总结。他们往往认为只要多做题,就可以提高数学成绩。不得不说,这是很错误的想法,高中数学的知识点虽然多,但是题型就那么多,而且平时练习做的题,一定不会和高考题目一样,所以在平时做题的时候,一定要更加重视解题的思路和方法。
高一数学学习要注意
不乱买辅导书
很多高中生认为想要学好数学,就要多做题。所以就买了很多辅导书来做,但是对于数学成绩提高的效果却不是很明显。其实,学好数学和辅导书并没有直接的关联。有做辅导书的时间,高中生不妨好好整理一下自己的数学卷子,把卷子上的难题研究透了,比什么辅导书都有用。
整理错题
很多高中生都没有整理错题的`习惯,其实用好错题本是很重要的。高中生可以把自己做错的题和不明白的题,都整理在错题本上,不懂的问题可以请教老师和同学,之后把正确的答案和思路都记录好。
高一数学学习方法
先看笔记后做作业
有的高一学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的最大区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
要养成勤学善思的习惯,提高创新能力
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。
课前预习
课前预习是学生上好新课,取得较好学习效果的基础。课前预习不仅能培养自学能力,而且能掌握学习的主动权。课前预习过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。
数学学习方法总结7
作为教育工作者,对待学生学习上的问题,处理问题的心态与家长有所不同,家长由于亲情关系,容易急燥,然而对待学习和成长方面的问题,急燥是不解决问题的,必须要有科学的方式、方法和教育手段,引导学生解决这些学习中的问题。
数学有一个特点是重要、枯燥。重要是显而易见的,数学作为基础学科,高考、中考都考数学;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学学习当中的技巧性问题和心理问题。当然不可能人人都能把数学学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力…..各人的倾向性不一样,擅长的方面也各不相同,对数学能达到的层次也会参差不齐,但有一点,数学的一些基本要求一定要掌握,例如数学中的一些基本原理、数学方法不能有半点马虎。因为无论将来我们从事什么行业,数学作为一种基本的处理事物的方法都非常重要。一般的孩子只要通过正确的方法,正确的引导都能够达到。
一、数学中关于概念的问题
概念的形成需要一个过程。与人生哲理等概念不同,数学概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学中的一个根本问题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的一个阶段。
概念具有长期性。每个概念都有一个失败—再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。
概念是随着一个人知识的增加而不断深入的。学数学对一个人建立完整的思维方式很重要,随着对不同数学概念的深入理解,人们处理问题的方式可以越来越趋于严谨。
要建立一个数学的概念网。数学是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清析的脉络。
从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的概念或概念的内部关系认识不清,不利于理解概念,这说明数学末学深入。
二、运算能力:
符号化、模式化是数学的一大特点,对这点我们应该有深刻的认识。
1、模式化。数学的一些定理、原理、公理都有一定的模式,“因为即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。
2、符号化。数学的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数学就是符号游戏,我们对符号必须精通,才能进行迅速变形。
中学阶段有几个重要的定理:三垂线定理、正余弦定理、根与系数的关系、二次三项式定理。对这几个定理的运用必须熟练掌握。
三、做题技巧:
从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。
做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,因为高考中有难题,平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。
做题要留体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的相互融合,就实现了对新、旧知识的最新体会。
数学学习方法总结8
一、怎样听课
在课堂上,我们有些同学不会听课,上课时老师在上面讲,他就在下面记,老师讲完了,他在下面记完了,老师讲到的内容一点也没听到。所以上课时要处理好听课和记笔记的关系。那么,听课听什么,怎么听?
(1)听知识引入及知识形成过程,例如,我们在学习等腰三角形时,同学们知道等腰三角形的一条性质是“等边对等角”,我们是怎样推导这个性质的。
(2)听老师对重点、难点剖析(尤其是预习中的疑点)
(3)听例题解法的思路和数学思想方法。
二、怎样记笔记
再说记笔记,同学们一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听讲”和“思考”。有的笔记虽然记得很全,但效果不是很好,因此在作笔记时应做到
(1)记笔记服从听讲,要掌握记录时机;一般情况下,需要记笔记的内容,老师都会给你留出时间。
(2)记要点、记疑问、记解题思路和方法。要明确“记”是为前面的“听课”和“思考”服务的。掌握好这三者的关系,就能使课堂学习主要环节达到较完美的境界。
(3)多种感官协同并用记忆法
对于一个新的事物,用眼睛看,只能见外形。如果加上耳朵听、动手触摸,能嗅、能尝的,连嗅觉、味觉也用上,这样,利用多种感觉器官与该事物接触,就可获得对该事物的多种信息,这些信息由大脑进行综合的加工,必然获得更加丰富、深刻而牢固的认识。日后在应用、提取的时候,由于多种感官之间已经建立起了神经活动联系,恢复该事物痕迹的线索也会更多。这种方法用之于读书,就是我国自古以来提倡的眼、耳、口、手、心“五到”读书法。把眼看、口念、耳听、手写、脑记结合起来,决非愚笨,而是自觉地应用了符合科学原理的记忆方法,其效果必然显著。
例如“看图动手操作记忆法”是多种感官并用法中之一种。例如,有的人爱看图,尤其是用铅笔或小棍指着看,效果尤佳。这是因为将视觉与动觉结合起来,既提高了注意的集中程度,又使视觉和动觉之间建立起了神经活动联系。日后在回忆时,多重联系较单一联系更容易恢复起来,从而显示出极其良好的记忆效果。即使是学习数学公式,未尝不可在眼看的同时,也用口念出声来,再加上手写。道理是完全相通的。
数学学习方法总结9
在你学习时,千万别忘了那就是在你做事时候,集中精力是最重要的除了正在做的这件事在外,别的什么事情都不要想。就象你做游戏时候一样都需要认真,如果你不能认真地集中注意力你就做不好游戏,学习也是一样。你不论做什么事情都需集中注意力,如果不能认真地集中注意力,都将毫无进展,也无法从中获得丝毫满足感。
1.课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
2.突出重点
精益求精在考试大纲的要求中,对内容有理解,了解,知道三个层次的要求;对方法有掌,会(能)两个层次的要求,一般地说,要求理解的内容,要求掌握的方法,是考试的重点。在历年考试中,这方面考题出现的概率较大;在同一份试卷中,这方面试题所占有的分数也较多。"猜题"的人,往往要在这方面下功夫。一般说来,也确能猜出几分来。但遇到综合题,这些题在主要内容中含有次要内容。这时,"猜题"便行不通了。我们讲的突出重点,不仅要在主要内容和方法上多下功夫,更重要的是要去寻找重点内容与次要内容间的联系,以主带次,用重点内容担挈整个内容。主要内容理解透了,其它的内容和方法迎刃而解。即抓出主要内容不是放弃次要内容而孤立主要内容,而是从分析各内容的联系,从比较中自然地突出主要内容。
3.基本训练反复进行学习数学
要做一定数量的题,把基本功练熟练透,但我们不主张"题海"战术,而是提倡精练,即反复做一些典型的题,做到一题多解,一题多变。要训练抽象思维能力,对些基本定理的证明,基本公式的推导,以及一些基本练习题,要作到不用书写,就象棋手下"盲棋"一样,只需用脑子默想,即能得到正确答案。这就是我们在常言中提到的,在20分钟内完成10道客观题。其中有些是不用动笔,一眼就能作出答案的题,这样才叫训练有素,"熟能生巧",基本功扎实的人,遇到难题办法也多,不易被难倒。相反,作练习时,眼高手低,总找难题作,结果,上了考场,遇到与自己曾经作过的类似的题目都有可能不会;不少考生把会作的题算错了,归为粗心大意,确实,人会有粗心的,但基本功扎实的人,出了错立即会发现,很少会"粗心"地出错。
调整心态,正确对待考试。
数学学习方法总结10
一、初中生数学学习方法的现状与分析
通过近三年的课堂教学实践,初中生数学学习的基本方法可归结为:读、听、思、说、记、写、纠、用,并存在一定的缺陷和不足。主要表现在:
1.诸多学生不会阅读数学课本内容,总以为阅读课本就是看结论,呆读硬背,不仅没读懂读透,而且应变能力和实际应用能力都较差,严重制约了自学能力的发展。
2.学生不能充分认识到老师讲课的重要作用,听课时抓不着重点,导致顾此失彼,精力分散,听课效率下降,效果极其底下。
3.学生思考问题常常受思维定势的干扰和影响,不善于分析转化和进一步思考,其思路狭窄、滞后,甚至受阻,挫伤其学习的积极性,不利于他们的学习。
4.口头表达能力差。主要表现在解题时会却无法表达。回答老师提问时,口头表达的内容不精炼,不生动,欠准确,或答非所问。
5.识记知识多是机械记忆,理解记忆少,满足于记住结论,而不立足于去理解、概括、联想,导致认知网络不能完整建立。
6.书写格式混乱,条理不清楚,作图不规范,缺乏应有的严谨性和规范性。尤其是几何问题更为突出。
7.学生在作业或测试后,对出现的错误,不能及时纠正,找不出错误的原因及矫正的方法。
8.由于学生对知识的记忆是机械的,重知识结论,轻知识发生的过程及来源,导致不能用所学知识去解决实际问题,应用能力差。
二、指导学生数学学习学法的对策
针对上述存在的诸多问题,作为教师又如何去指导学生的学习呢?本人认为应从以下几个方面去培养学生的“读、听、思、说、记、写、纠、用”的能力。
1.重课本内容读的指导
南宋朱熹说过:“幼时读书,背至滚瓜烂熟,不甚了了,成年逐渐感悟,回思意味深长。”这表明一个人学习,读和悟,读是第一位的。因此要认真指导学生阅读数学课本,从课本的各个方面去去深入理解内容。一是读标题,要求学生细细体会标题,能提纲挈领地抓住教材的主要内容;二是读例题,在预习时应要求学生带着问题读例题,并初步理解解题方法;三是读插图,它们可使学生更形象、具体、准确地理解文字的内容;四是读算式,按算式各部分的原理读,按算式所表示的意义读,这样可以弄清算式的概念和意义;五是读结语,要求学生对结语逐字逐句地理解分析,以便准确地把握。
同时读书时要抓好三点:一是粗读,即边读边圈、点、勾、画,大体弄懂教材内容,对理解有困难的地方作记号;二是精读,即在教师讲解的基础上细嚼课文,把握重要的数学概念、公式、法则、思想及方法;三是研读,即当每一章节内容学完后,整理学过的知识,弄清体系,小结归纳要点,形成知识网络。
2.抓教学过程听的指导
数学教学中指导学生听课,先从培养学习兴趣入手来集中学生的注意力,使其激活原有的认识结构,打开“听门”,专心听讲。其次,要指导学生会听课,主要从以下几方面去努力:一是注意听教师每一节课开始所讲的教学内容、重点和学习要求;二是注意听教师在讲解例题时关键读粉的提示和处理;三是注意听教师对概念要点的剖析和概念体系的串联;四是注意听教师每一节课的小结和对某些较难习题及例题的提示等。
3.注重激启学生说的指导
在数学教学中。怎样激发启发学生说呢?第一,启发学生说思路,说思维过程。课堂上要让每个学生都有说自己想法的机会,可以让学生根据某一个问题,独自小声说,同桌之间练习说,四人小组相互说,教师学生共同说……等等。通过说,培养学生语言的条理性和思维的逻辑性。第二,引导学生用简明、准确、规范的数学语言,完整地回答问题,在引导学生观察、分析、推理、判断后,启发学生用自己的话总结,概括出定义、法则或公式,使感性认识上升到理性认识。
4.培养学生写的指导
数学教学中,教师要指导学生学会做学习笔记;指导学生将数学语言转化为数学符号;指导熟练掌握数学常用书写格式,指导他们学会作图,培养学生的直观思维能力。
5.严格学生纠错的指导
(1)设置“陷阱”,诱使学生得出错误
有的放矢地选一些颇具迷惑性的题目,在易错的节骨眼上设“陷阱”,先诱使学生陷入歧途,制造思维冲突,再引导学生在自查自理中挣扎出来,达到学生深刻理解概念和知识的目的。
(2)适时恰当引入错例,引导学生独立评析错误
对于例题的错误解法由学生独立地对错误进行评析和判断,引导学生独立寻找错误加以分析,让其自己进行矫正。
(3)强调学生用知识意识的指导
所谓数学应用就是人们在自己工作、学习和生活中,碰到各种各样的实际问题时,会想到用数学方法解决它。如何指导及培养呢?一是培养学生观察生活中的数量,记住一些常用数量;二是注意用实际问题引发数学新知识,并及时用新知识解决提出的问题;三是要告诉学生,数学图形是思考的工具。数形结合,培养学生的用图能力和直观思维能力;四是安排一定的室外数学实习,让学生去讨论实际的数学问题;五是收集一些报刊或书籍,让学生体会到数学应用的广泛性;六是鼓励学生发现和修改课本或学习资料中不合实际的问题。
总之,学法指导必须与新课程实施同步,应从初一年级抓起,循序渐进,持之以恒,协调发展。教师应善于研究学生学法的现状并加以分析,研究数学方法与学生指导策略,指导有序,对症下药,因人而异,因材施教,让学生知其然,也知其所以然,形成自学能力,提高学习效率。只有这样才能有助学生由“学会”向“会学”转化,真正把素质教育落到实处,使新课程的实施落到实处。
数学学习方法总结11
数学分析是基础课、基础课学不好,不可能学好其他专业课。工欲善其事,必先利其器。这门课就是器。学好它对计算科学专业的学生都是极为重要的。这里,就学好这门课的学习方法提一点建议供同学们参考。
1.提高学习数学的兴趣
首先要有学习数学的兴趣。两千多年前的孔子就说过:“知之者不如好之者,好之者不如乐之者。”这里的“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,世界知名的伟大科学家、相对论学说的创立者爱因斯坦也说过:“在学校里和生活中,工作的最重要动机是工作中的乐趣。”学习的乐趣是学习的主动性和积极性,我们经常看到一些同学,为了弄清一个数学概念长时间埋头阅读和思考;为了解答一道数学习题而废寝忘食。这首先是因为他们对数学学习和研究感兴趣,很难想象,对数学毫无兴趣,见了数学题就头痛的人能够学好数学,要培养学习数学的兴趣首先要认识学习数学的重要性,数学被称为科学的皇后,它是学习科学知识和应用科学知识必须的工具。可以说,没有数学,也就不可能学好其他学科;其次必须有钻研的精神,有非学好不可的韧劲,在深入钻研的过程中,就可以领略到数学的奥妙,体会到学习数学获取成功的喜悦。长久下去,自然会对数学产生浓厚的兴趣,并激发出学好数学的高度自觉性和积极性。用兴趣推动学习,而不是用任务观点强迫自己被动地学习数学。
2.知难而进,迂回式学习
首先要培养学习数学分析的兴趣和积极性,还要不怕挫折,有勇气面对遇到的困难,有毅力坚持继续学习,这一点在刚开始进入大学学习数学分析时尤为重要。
中学数学和大学数学,由于理论体系的截然不同,使得同学们会在学习该课程开始阶段遇到不小的麻烦,这时就一定得坚持住,能够知难而进,继续跟随老师学习。
学习数学分析时要注意数学分析和高等数学要求不同的地方,否则你学习数学分析就与高等数学没有什么区别了;而且高等数学强调的是计算能力,数学分析强调的是分析的能力,分析的能力没有学到,就谈不上学好了数学分析。学好数学分析课程还有一个重要的原因是新生们体会不到的,数学分析的知识结构系统性和连续性很强,这些知识学得不扎实,肯定要影响后面知识的学习。同时将来考硕士,还是要考这门课程。如果大学第一年不把这门课程学好,将来可就难了。刚开始学习数学分析,会感觉很晕。对于老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,课后习题都没几个会做的。其实感觉晕是很正常的,而且还得要晕上几个月才可能就会好的。所以要硬着头皮跟着老师学了下来。虽然感觉还是不太懂,虽然做作业仍然感觉很费劲,但始终不要放弃,这种状态是学习数学分析的一个必经之路,因此必须克服这个困难才能学好数学分析理论知识。
除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为数学分析理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。比如说,在“数学分析”一开始学习实数系的确界存在基本定理时,由于当时根本没什么基础,所以对于“引入这个定理的目的是什么?”这个问题怎么想也想不通,甚至觉得这个定理没有什么实质的意义。但到后来学到了多元部分的数学分析,以及专业课“实变函数”时,才开始慢慢理解它的真正目的。这里之所以要说明是实数系有确界存在的性质,即相当于有一种连续的性质,目的就是为了后面的极限和连续做铺垫的,因为只有在自变量能够连续变化的时候,考虑因变量的相应变化才有意义,进而才能研究函数的性质。但是如果没有学到后面,只了解区间而不知其它一些怪异的点集时是很难想通这个问题的。
所以,在开始学习数学分析时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。
但是,也并不是说在初学时就不去思考任何问题。相反,勤于思考是学好数学必备的好习惯,“数学是思维的体操”,只有坚持思考才能掌握它的理论体系和逻辑关系。因此,应该在学习时掌握尺度,既要保证有充分的思考,但同时又不能过于钻牛角尖。
3.了解背景,理论式学习
数学分析与中学数学明显的一个差异就在于数学分析强调数学的基础理论体系,而中学数学则是注重计算与解题。针对这个特点,学习数学分析就应该注重建立自己的数学理论知识框架。
要学习理论体系,首先就应该知道为什么要建立这种理论,它的作用是什么,这就要了解数学的历史背景知识。比如“数学分析”在一开始就强调对-N语言的掌握,而它的产生则是由于数学史上的“第二次数学危机”引起的。众所周知,Newton创立的微积分,虽然在其应用方面取得了巨大的成就,但微积分在那时的理论基础是相当混乱的。Newton在求导数时先将无穷小量看成非零数作为分母,后来又将其视做零而舍去,因此这就导致了逻辑上的错误。为了给微积分奠定正确而坚实的基础,大数学家威尔斯特拉森在Cauchy的基础上提出了用-N语言的方法来推出极限和导数的概念。借助-N语言,可以十分清晰地展示出函数取极限的过程,而且在逻辑上也非常清楚严谨。这样,当了解了这些历史背景知识之后,就觉得学习-N语言是很必要的,学起来也就自然得多了。除了了解背景帮助我们学习理论知识外,还要下苦功夫去学习。在接触了这些陌生的数学理论一段时间后,可能觉得看起来已经懂了,但其实自己不一定能真正掌握,尤其是那些证明中内含的逻辑关系最容易出错。所以在学习时,应该适当地记忆理论知识,有时还应该默写定理,只有通过默写才能发现自己在理论上的漏洞,才能培养出自己严密的理论、逻辑能力,这对以后的学习都是很有帮助的。
4.把握三个环节,提高学习效率
(1)课前预习
适当的预习是必要的,了解老师即将讲什么内容,相应地复习与之相关内容。如果时间不多,你可以浏览一下教师将要讲的主要内容,获得一个大概的印象,这可以在一定程度上帮助你在课堂上跟上教师的思路,如果时间比较充裕,除了浏览之外,还可以进一步细致地阅读部分内容,并且准备好问题,看一下自己的理解与教师讲解的有什么区别,有哪些问题需要与教师讨论。如果能够做到这些,那么你的学习就会变得比较主动、深入,会取得比较好的效果。
(2)认真上课
注意老师的讲解方法和思路,其分析问题和解决问题的过程,记好课堂笔记,听课是一个全身心投入听、记、思相结合的过程。教师在有限的课堂教学时间中,只能讲思路,讲重点,讲难点。不要指望教师对所有知识都讲透,要学会自学,在自学中培养学习能力和创造能力。所以要努力摆脱对于教师和对于课堂的完全依赖心理。当然也不是完全不要老师,不上课。老师能在课堂教学把主要思路,重点与难点交代清楚,从而使你自学起来条理清楚,有的放矢。对于教师在课堂上讲的知识,最重要的是获得整体的认识,而不拘泥于每个细节是否清楚。学生在课堂上听课时,也应当把主要精力集中在教师的证明思路和对于难点的分析上。如果有某些细节没有听明白,不要影响你继续听其它内容。只要掌握了主要思路,即使某些细节没有听清楚,也没有关系。你自己完全能够在这个思路的引导下将全部细节补足,最后推出结论。应当在学习的各个环节培养自己的主动精神和自学能力,摆脱对教师与课堂的过分依赖。这不仅是今天学习的需要,而且是培养创造能力的需要。
(3)课后复习
复习不是简单的重复,应当用自己的表达方式再现所学的知识,例如对某个定理的复习,不是再读一遍书或课堂笔记,而是离开书本和笔记,回忆有关内容,不清楚之处再对照教材或笔记。另外,复习时的思路不应当教师讲课或者教科书的翻版,一个可供参考的方法是采用倒叙式。从定理的结论倒推,为了得到定理的结论,是怎样进行推理的,定理的条件用在何处。这样倒置思维方式,更加接近这个定理的发现的思路,是一种创造性的思维活动。
5.掌握方法,全面式学习
(1)概念的学习方法是:①阅读概念,记住名称或符号;②背诵定义,掌握特性;③举出正反实例,体会概念反映的范围;④进行练习,准确地判断;⑤与其它概念进行比较,弄清概念间的关系。
(2)公式的学习方法是:①书写公式,记住公式中字母问的关系;②懂得公式的来龙去脉,了解推导过程;③验算公式,在公式具体化过程中体会公式中反映的规律;④将公式进行各种变换,了解其不同的变化形式。
(3)定理的学习方法是:①背诵定理;②分清定理的条件和结论;③了解定理的证明过程;④应用定理证明有关问题;⑤体会定理与逆否定理、逆命题的联系。有的定理包含公式,如中值定理、定理,它们的学习还应该同公式的学习方法结合起来进行。
6.数学分析解题方法
在学习数学分析过程中,更多的困难来自于习题。
首先,大家要重视基本概念和基本原理的理解和掌握,不要一头扎进题海中去。上面已经提及,提高解题能力重要途径之一是掌握好基本概念和基本方法。另一方面,因为数学分析题型变化多样,解题技巧丰富多彩,许多类型的题目并不是只要掌握好基本概念和基本方法就会作的。需要看一些例题,或者需要教师的指点。不要因为某些题目一时找不到思路而失去信心。
至于如何解题,很难总结出几个适用于所有题目的通用的方法。怎样提高自己的解题能力?除了天生的智力因素之外,解题能力首先取决于基本概念和基本原理的理解与掌握程度。所以,多下功夫掌握基本概念和基本原理,尽可能地多做题目,在记忆的基础上理解,在完成作业中深化,在比较中构筑知识结构的框架,是提高解题能力的重要途径。另外,做题要善于总结,特别是从不同的题目中提炼出一些有代表性的思想方法。
下面是数学分析课程中部分内容的一些解题方法。
(1)数列的极限
重点:了解定义,即证明方法。特别是Cauchy收敛准则。学会反证法的表述法。
解法:
a.利用压缩映像或者数学归纳法及放缩法的到极限存在。然后,假设极限等于c,解出c的具体的值。
b.有时可以直接解出数列的通项公式,然后带入求得极限。c.Stolz公式。
(2)求函数的极限重点:同1)的重点解法:
a.对于一元的情况比较简单,注意应用极限性质时的条件要求。
b.对于多元的时候,先处理一个未知数,再处理第二个。不断利用放缩法。或者换元。
c.具体要了解上下极限、上下确界的含义。注意,极限存在也是一个条件,且这个条件是很强的。
(3)函数的连续性
重点:了解定义,和基本证明的方法。了解什么是一致连续性.解法:
a.证明f(x)和g(x)有交点的题目,如果是连续的,可以用介值定理,否则可以用实数系的定理来证明。
b.有些题目证明f(x)符合某些性质,可以先证明整数、再证明有理数。最后利用连续性来证明所有的实数满足条件.
c.了解什么是一致连续,能举得出连续但不是一致连续的各种函数图像的例子,对于解题时很有帮助的
(4)导数和微分
重点:会求导的各种技巧,并了解定义求导数的方法。了解可导和连续的关系。
解法:
a.一元微分是十分简单的。二元以上的微分,要用链式求导,可能会很繁琐,但要做到滴水不漏。另外,学会换元的方法。
b.对于求最值的题目,首先试试初等方法,不行就用Lagrange乘子法。c.熟练掌握三种中值定理。遇到证明不等式,就想办法往这三个中值定理靠,构造辅助函数。实在不行,就构造f(x)=左边,g(x)=右边。证明f(x)-g(x)递增或者递减,然后再取边界的情况讨论一下。
d.熟练掌握L’Hospital法则,注意它和Cauchy中值定理的联系。注意它的条件必须要导函数连续。c.有些题目可以不用L’Hospital,直接用Taylor级数代余项的展开。可能更为简洁。
(5)积分
重点:熟练不定积分。和多元微积分的各种方法。了解积分中值定理.解法:
a.一元微积分比较简单。多元微积分,强调技巧。熟练掌握包括换元、Green(Stokes)定理、Gauss公式。并且注意,使用他们要求有闭曲线,或者封闭曲面。如果没有封闭的面记得要补上那部分.b.含参变量的积分,掌握莱布尼兹求导公式,剩下的就是求导的各种技巧了。I(a)=f(a);I’(a)=f(a)I(a)题目里面没有要求求出函数解析式,只要求一些特殊的值。找到I(x0),I’(x0)的关系,同具体参见试题。
c.积分不等式:积分中值定理或者利用求导的方法证明,基本同前面的导数的情况。
d.学会利用级数展开的方法求积分,并了解一些特殊的定积分的值。
e.了解绝对收敛和相对收敛的区别。
(6)一致连续和一致收敛
重点:充分了解一致收敛的含义。解法:
a.大部分题目会和积分或者求和联系起来,首先证明(内闭)一致收敛,然后用定义证明,将积分区间分成两部分,分别趋近于不同的极限.
b.证明函数组一致收敛:AD判别法(注意还有关于积分的AD判别法,参见陈传璋的版本,归根到底就是Abel求和公式和分部积分法),或者按照定义作。可能要分成几个区间,注意这一点,此时是证明对于任意的e,在这几个区间中寻找最小的d,使得差小于e。而不是证明分别在这几个区间中,一致收敛。
c.证明函数组不是一致收敛的。得到一个数列{xn},如果fn(xn)不趋近于f(x)的话就不是一致收敛的。
d.逐项求导和逐项积分要求一致收敛(内闭一致收敛也可以)。由于积分和求导都是极限的运算,这就是所谓的极限互相穿越的意思。
掌握一定量的题型,对于一些题目,直接知道用什么方法做。有些题目没有头绪的时候,可先尝试找反例,然后想想为什么反例不成功,从中可以的得到不少的启发。还有要充分了解函数的各种性质。做题的时候脑子里要有函数图像。另外,充分了解定义,特别是一致收敛。了解为什么有时候一致收敛才有题目的结论,如果条件收敛,是不是也有这样的条件。多想几次就有了深刻的了解。遇到不清楚的地方赶快看书,多看几遍书对于理解题目是非常有用的。再有,尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个人有不同的风格。不同的切入角度,会使你有时候读一些问题豁然开朗。
7.学会利用参考书
尽可能多地参考一些书籍会使你开阔眼界,增长知识,加深理解。每个作者有不同的风格,不同的切入角度,学会利用参考书会使你对一些问题豁然开朗。
看参考书有两种方式,其一是通读某一本书,不过大家往往没有太多的时间去通读教材之外的书。所以我建议大家采用第二种方法:以问题为中心,有选择地读参考书,具体地说就是:如果你对数学分析中的某一部分,或者某个问题有兴趣,希望多了解一些,作比较深入的研究,那么可以查阅几本书,看一看其他书上对这个问题是怎样论述的,在学习的基础上,自己可以做一个小结,在是自学的重要方式。好的辅导书对于帮助自己学习数学分析也是有用的,但是使用辅导书要注意方法,不要仅仅停留于逐个地看例题,看得懂不等于会做,想到思路不等于做得完全正确。如果你想扎扎实实地提高解题能力,就要认真地、独立地解题,通过自己动脑动手体会解题的思路、方法和技巧。
最后,就是平时没有事的时候多想想,想想一些定理,自己想不同的方法证明。想想如果没有其中的某些条件,定理是否仍然成立。
总之,掌握了一定方法,再加上自己的努力,必能学好数学分析这门课,为后继课程的学习打下扎实的基础。
数学学习方法总结12
【一、及时回忆】
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
【二、重复巩固】
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
【三、合理安排】
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
【四、突破重点难点】
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
【五、效果检测】
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。
【数学学习方法推荐】
高一数学与初中数学的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-1)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而y=f(x-1)与y=f(1-x)的图象却关于直线x=1对称,不透彻理解一个图象的对称性与两个图象的对称关系的区别,两者很容易混淆。
数学学习方法总结13
1.特值检验法
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为
A.-5/4
B.-4/5
C.4/5
D.2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。
2.极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。例:256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125
B.125,127
C.127,129
D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。
10.估值选择法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高中数学学科十大抢分技巧,希望大家喜欢。
数学学习方法总结14
理解老师讲解的内容
学生对教师所讲的内容的理解,还没能达到教师所要求的层次。因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。能否坚持如此,常常是好学生与差学生的区别。尤其练习题不太配套时,作业中往往没有老师刚刚讲过的题目类型,因此不能对比消化。如果自己又不注意对此落实,天长日久,就会造成极大损失。
学会做题
要把课本,笔记,区单元测验试卷,校周末测验试卷,都从头到尾阅读一遍。要一边读,一边做标记,标明哪些是过一会儿要摘录的。要养成一个习惯,在读材料时随时做标记,告诉自己下次再读这份材料时的阅读重点。长期保持这个习惯,学生就能由博反约,把厚书读成薄书。积累起自己的独特的,也就是最适合自己进行复习的材料。这样积累起来的资料才有活力,才能用的上。
整理资料
要注意积累复习资料。把课堂笔记,练习,区单元测验,各种试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。
数学学习方法总结15
抓住课堂,配合好教师的教学
应做到课前做好各种准备并利用课前两分钟的预习时间想一想前一节课的内容;上课时专心致志,积极思考,尽量使自己的思路与教师的思路过程合拍,做到耳目并用,手脑结合,提高听课的效率;课后及时复习,使知识再现,形成永久性记忆;最好能将老师所讲的内容与课本作一比较,从中获得更多知识;作业仅限于课堂练习是远远不够的,要利用课外资料拓宽知识领域,补充课内不足,更重要的是促进课内学习。
善于归纳总结知识间的联系
学习数学并非我做题就可以取得好的成绩,而是要将精力花在归纳总结上。特别对课本或课堂上出现的例题,只要善于总结,就可以了解这一小节数学内容有哪几种题型,每种题目的一般解法和思路是什么,从而提高运用所学知识分析解题的能力。同时,每学完一个单元,要建立本单元的知识框架,将本章的主要思路、推理方法及运用技巧等转变成自己的实际技能。
学会发现问题,并重视质疑在学习中常看到成绩好看同学,总是有很多问题问老师,而成绩差的同学却提不出什么问题。提出疑问不仅是发现真知的起点,而且是发明创造的开端。提高学习成绩的过程就是发现,提出并解决疑问的过程。大胆向老师质疑,不是笨的反映,而是在追求真知、积极进取的表现。在听课中,不但要“知其然”,还要“知其所以然”,这样疑问也就在不断产生,再加以分析思考使问题得以解决,学习也就得到了长进。
要重视自学能力的培养
学生在校学习时有着许多自习的时间,如能坚持自学,学起来就速度快、印象深、质量高。自学并不仅限于课内,还包括阅览课外书籍,使课内外知识互补。只有具有独立获取新知识的能力,才能不断更新自身的知识体系,跟上时代的节拍。
【数学学习方法总结】相关文章:
数学的学习方法总结10-11
数学学习方法总结10-30
小学数学的学习方法总结11-30
初中数学的学习方法总结10-25
小学数学的学习方法总结09-10
数学学习方法总结09-05
初中数学的学习方法总结09-07
数学学习方法的总结11-14
关于数学的学习方法总结04-17
最新的数学学习方法总结10-25