八年级数学学习方法

时间:2024-11-01 12:25:57 学习方法 我要投稿

八年级数学学习方法

  在我们平凡的日常里,大家都在不断地学习,掌握学习方法,可以帮助大家更加高效的学习。想要找到正确的学习方法?下面是小编精心整理的八年级数学学习方法,供大家参考借鉴,希望可以帮助到有需要的朋友。

八年级数学学习方法

八年级数学学习方法1

  (1)怎样听课

  在课堂上,我们有些同学不会听课,上课时老师在上面讲,他就在下面记,老师讲完了,他在下面记完了,老师讲到的内容一点也没听到。所以上课时要处理好听课和记笔记的关系。那么,听课听什么,怎么听?(1)听知识引入及知识形成过程,例如,我们在学习等腰三角形时,同学们知道等腰三角形的一条性质是“等边对等角”,我们是怎样推导这个性质的。(2)听老师对重点、难点剖析(尤其是预习中的疑点)(3)听例题解法的思路和数学思想方法。

  (2)怎样记笔记

  再说记笔记,同学们一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听讲”和“思考”。有的笔记虽然记得很全,但效果不是很好,因此在作笔记时应做到(1)记笔记服从听讲,要掌握记录时机;一般情况下,需要记笔记的内容,老师都会给你留出时间。(2)记要点、记疑问、记解题思路和方法。要明确“记”是为前面的“听课”和“思考”服务的。掌握好这三者的关系,就能使课堂学习主要环节达到较完美的境界。

  (3)多种感官协同并用记忆法

  对于一个新的事物,用眼睛看,只能见外形。如果加上耳朵听、动手触摸,能嗅、能尝的,连嗅觉、味觉也用上,这样,利用多种感觉器官与该事物接触,就可获得对该事物的多种信息,这些信息由大脑进行综合的'加工,必然获得更加丰富、深刻而牢固的认识。日后在应用、提取的时候,由于多种感官之间已经建立起了神经活动联系,恢复该事物痕迹的线索也会更多。这种方法用之于读书,就是我国自古以来提倡的眼、耳、口、手、心“五到”读书法。把眼看、口念、耳听、手写、脑记结合起来,决非愚笨,而是自觉地应用了符合科学原理的记忆方法,其效果必然显著。

  例如“看图动手操作记忆法”是多种感官并用法中之一种。例如,有的人爱看图,尤其是用铅笔或小棍指着看,效果尤佳。这是因为将视觉与动觉结合起来,既提高了注意的集中程度,又使视觉和动觉之间建立起了神经活动联系。日后在回忆时,多重联系较单一联系更容易恢复起来,从而显示出极其良好的记忆效果。 即使是学习数学公式,未尝不可在眼看的同时,也用口念出声来,再加上手写。道理是完全相通的。

八年级数学学习方法2

  一、轴对称图形

  1.把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2.把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

  3、轴对称图形和轴对称的区别与联系

  4.轴对称的性质

  ①关于某直线对称的两个图形是全等形。

  ②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  二、线段的垂直平分线

  1.经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  2.线段垂直平分线上的点与这条线段的两个端点的距离相等

  3.与一条线段两个端点距离相等的点,在线段的垂直平分线上

  三、用坐标表示轴对称小结:

  1.在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.

  2.三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等

  四、(等腰三角形)知识点回顾

  1.等腰三角形的性质

  ①.等腰三角形的两个底角相等。(等边对等角)

  ②.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)

  2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边)

  五、(等边三角形)知识点回顾

  1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600。

  2、等边三角形的判定:

  ①三个角都相等的三角形是等边三角形。

  ②有一个角是600的等腰三角形是等边三角形。

  3.在直角三角形中,如果一个锐角等于300,那么它所对的直角边等于斜边的一半。

  ①、等腰三角形的性质

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  ②、等腰三角形的其他性质:

  (1)等腰直角三角形的两个底角相等且等于45°

  (2)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  (3)等腰三角形的三边关系:设腰长为a,底边长为b,则

  (4)等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=

  ③、等腰三角形的判定

  等腰三角形的判定定理及推论:

  定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。

  推论1:三个角都相等的三角形是等边三角形

  推论2:有一个角是60°的等腰三角形是等边三角形。

  推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。

  ④、三角形中的中位线

  连接三角形两边中点的线段叫做三角形的中位线。

  (1)三角形共有三条中位线,并且它们又重新构成一个新的.三角形。

  (2)要会区别三角形中线与中位线。

  三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。

  三角形中位线定理的作用:

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

  数学学习困难的原因

  1、学习自觉性较差

  初中生学习自觉性较差,缺少解题的积极性,解题时不注重步骤、过程。

  2、学习意志薄弱

  数学的逻辑性和抽象性很强,知识间联系紧密,对学生的灵活应用能力,分析能力要求很强。如果学生对前面所学的知识掌握不好或未理解的话,就会直接影响深一层次内容的学习,造成知识脱节,跟不上集体学习的进程,在加在自身的毅力薄弱。其结果往往就会产生厌学情绪,放弃数学的学习。

  3、无兴趣学习或兴趣低

  一部分学生一开始就没有学好数学,导致基础不好,久而久之导致恶性循环;还有些学生认为学数学没用,选择放弃选读,因此成绩变得连“过得去”也难以维持。

  4、没有养成良好的数学学习习惯

  有些学生边学边玩,注意力不集中,或是思维单一,不能横向思考或纵深思考;又或者不听不记,思维懒惰,粗心大意、马虎等等都是造成错误率高的重要原因。

  所以同学们要注意自己是否存在以上问题,要想办法及时解决。

  数学学习方法

  1.注重预习培养自学能力

  在预习的时候,应当把定理、定律、公式、常数、特定符号这些内容单独汇集在一起,每抄录一遍,则加深一次印象。上课的时候,老师讲到这些地方时,应把自己预习时的理解和老师讲的相对照,看自己有没有理解错的地方。预习可以用“一划、二批、三试、四分”的预习方法。

  一划:就是圈划知识要点,基本概念。

  二批:就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方。

  三试:就是尝试性地做一些简单的练习,检验自己预习的效果。

  四分:就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。

  2、把握课堂,提高学习效果

  课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到。

  手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;

  耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;

  口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;

  眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;

  心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。

  3、掌握练习方法,提高解答数学题的能力

  数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

  (1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

  (2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

  (3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

  4、掌握复习方法,提高数学综合能力.

  复习是记忆之母,对所学的知识要不断地复习,复习巩固应注意掌握以下方法。

  (1).合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习。

  (2).采用综合复习方法,即通过找出知识的左右关系和纵横之间的内在联系,从整体上提高,综合复习具体可分“三步走”:首先是统观全局,浏览全部内容,通过唤起回忆,初步形成知识体系印象,其次是加深理解,对所学内容进行综合分析,最后是整理巩固,形成完整的知识体系。

  (3).突破薄弱环节的复习方法.要多在薄弱环节上下功夫,加强巩固好课本知识,只有突破薄弱环节,才利于从整体上提高数学综合能力。

八年级数学学习方法3

  一元一次不等式和一元一次不等式组

  一、一般地,用符号(或),(或)连接的式子叫做不等式。

  能使不等式成立的未知数的值,叫做不等式的解。不等式的解不,把所有满足不等式的解集合在一起,构成不等式的解集。求不等式解集的过程叫解不等式。

  由几个一元一次不等式组所组成的不等式组叫做一元一次不等式组

  不等式组的解集:一元一次不等式组各个不等式的解集的公共部分。

  等式基本性质1:在等式的两边都加上(或减去)同一个数或整式,所得的结果仍是等式。

  基本性质2:在等式的两边都乘以或除以同一个数(除数不为0),所得的结果仍是等式。

  二、不等式的基本性质

  性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。(注:移项要变号,但不等号不变。)

  性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

  性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  三、解不等式的步骤

  1、去分母;

  2、去括号;

  3、移项合并同类项;

  4、系数化为1。

  四、解不等式组的步骤

  1、解出不等式的解集

  2、在同一数轴表示不等式的解集。

  五、列一元一次不等式组解实际问题的一般步骤:

  (1)审题;

  (2)设未知数,找(不等量)关系式;

  (3)设元,(根据不等量)关系式列不等式(组)

  (4)解不等式组;检验并作答。

  六、常考题型:

  1、求4x—6 7x—12的非负数解。

  2、已知3(x—a)=x—a+1r的解适合2(x—5)8a,求a的范围。

  3、当m取何值时,3x+m—2(m+2)=3m+x的解在—5和5之间。

  函数及其相关概念

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的'一般步骤

  (1)列表:列表给出自变量与函数的一些对应值

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  数学的学习方法

  1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。

  2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

  3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

  4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

  如何建立数学思维方式

  到了初中,数学出现了很多新的知识点,也是重点考点和关键难点,比如系统性的开始学习几何知识,首次引入函数的概念并求解一般的线性函数问题,这些对于初中生来说既是全新的,又是有一定难度的。这就需要学生创新数学思维方式,紧跟教材进度和课堂进度,训练自己的数学思维尤其的几何图形的感觉,以及对函数的深刻理解。

八年级数学学习方法4

  第一、学习方法不是万能的,学习中,最宝贵的品质永远是勤奋;

  第二、事半功倍是不可能的,学习中,永远也不要奢望不劳而获;

  第三、良好的学习方法,能够保证你的付出取得限度的收获。

  初中使用学习方法和技巧

  ①笔记纸——轻松做到没有遗漏

  做到知识点和习题类型没有遗漏,的办法就是把他们集中起来,按照一定的顺序和思路存放,其载体一要满足内容的不断补充,二要方便查阅。笔记纸是最合适的工具,构造:普通的活页纸背面左侧边缘布了一个带拉手的双面胶条。通过简单操作,即可粘贴到书缝中,相当于给书加了一页。笔记纸的使用要掌握以下技巧:

  1、建目录。

  一本教材大约包含十章左右,每章少则几页,多则十几页,包含着若干个大标题,而每个大标题又包含若干个小标题,每个小标题又包含着若干个知识点。第一遍通读的时候,按照章节,把标题和知识点摘录出来,写入笔记纸,粘到章节的前面。编这样一个目录,所有东西就一目了然,不仅能够找到所有的知识点,更帮助你清楚的认识知识间的关系,保证你在知识的海洋中永远不会迷失方向。

  2、勤总结。

  把每章的重点、难点、常考题型等,全部按照一定顺序记录到笔记纸上,粘到对应章节中间。在读书时,要对每个段落进行标记,比如“已经理解,不用再看”、“此题简单、不用再做”等等,这样,复习的时候,目标明确,避免胡子眉毛一把抓,避免了时间的浪费,自然提高了效率。

  3、大盘点。

  建目录是对每一章的盘点,大盘点则是当学完多章或者整本书的时候,对整本书进行的盘点,以明确各章在整本书中的位置和解决针对多章知识点的综合应用的题目。此外,还要把各章中相同或相近的内容进行横向盘点,比如把数学的公式、定理、公理等分别盘点一次,这样能够方便理解和记忆,是很有用处的。记录这些内容的`笔记纸,要粘在教材的目录位置,使方便查阅。

  4、常补充。

  把课堂上老师补充的内容、自己做题时发现的新知识点、新的题型、解题心得等补充到相应章节处,不断的充实和完善自己的知识库。

  通过以上的付出,能够做到对所学课程的所有知识都有清晰的认识,不仅能够认识每一个知识点,还能认识到知识点间的关系,能够综合运用多个知识点解题,解题的时候,知道此题是什么类型,考察的是哪个或哪几个知识点,在教材中的什么位置,自己是否掌握等等,真正做到没有遗漏。

  ②自检本——轻松做到真正掌握

  做到真正掌握,保证需要记忆的知识点都记住了、做过的题目考试的时候肯定能做对,的办法不是多记几次、多做几遍,而是在考试之前,先自己考自己,确认自己的学习成果。自检本是最合适的工具,构造:每本若干组,每组三页,第一页为普通纸,第二、三页为无碳复写纸。抄写题目用复写模式,垫板放在第三页后,在第一页书写后,第二、三页也会有题目;写答案、解题思路和答题用非复写模式,把垫板依次放在第一、二、三页后,书写内容互不影响。自检本的使用要掌握以下技巧:

  1、自检知识点记忆成果。

  自己动手,把每个知识点都变成考题,逐个检查自己的掌握情况。举例说,当你记忆单词时,复写模式下,把中文写在第一页,然后在非复写模式下,把英文抄在中文的后面。记忆过程中和过后,对照第二页,在草稿纸上默写,完毕后与第一页的答案对照,并在第二页上标记,对的打√,错的打×,不太熟练的打△,下次记忆时,只针对打×和△的,如此反复,直到全部搞定为止。这样做的好处,一是避免在已经会的知识上面浪费时间,二是找到不会的知识,重点解决。

  2、错题、典型考题自检。

  针对自己在以前考试中做错的题、典型考题和自己认为掌握的不好的考题,复写模式下,在第一页书写题目,在非复写模式下,在第一页写正确答案,在第二页写错误答案及原因分析,练习之后,参看第三页的题目,在草稿纸上解答,完毕后与第一、二页两种对、错答案对照,明确自己的效果,并在第三页题目下方标记,写上如“完全会了,不用再答”、“

  X月X日做了一遍,不熟,仍需再做“、”仍然不会、重点学习“等等,如此反复,直到全部搞定为止。

  ……

  通过以上的付出,能够明确自己哪些已经掌握了,不用在上面浪费时间和精力了;哪些没有掌握,需要继续攻克。这样,学习才有效率,成绩才会逐步提高。

  知识是有限的

  要想做好学习这件事情,首先要对它有正确的认识:一个学期,一门课程,要求学生通过学习掌握的、考试考察的知识是有限的。

八年级数学学习方法5

  有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。「注」“大”减“小”是指绝对值的大小。

  合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

  去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

  一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。

  恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n

  平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

  完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

  因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

  “代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)

  单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

  一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

  一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

  一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

  分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

  分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

  最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。

  特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。

  象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。

  平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。

  对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。

  自变量的`取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。

  函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。

  一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。

八年级数学学习方法6

  1.温故法

  概念教学的起步是在已有的认知结论的基础上进行的。因此,教学新概念前,如果能对自己认知结构中原有的概念适当作一些结构上的变化,引入新概念,则有利于促进新概念的形成。

  2.类比法

  抓住新旧知识的本质联系,有目的、有计划地让自己将有关新旧知识进行类比,就能很快地得出新旧知识在某些属性上的相同(相似)的结构而引进概念。

  3.喻理法

  为正确理解某一概念,以实例或生活中的趣事、典故作比喻,引出新概念,谓之喻理导入法。

  如,学“用字母表示数”时,先出示的两句话:“阿Q和小D在看《W的悲剧》。”、“我在A市S街上遇见一位朋友。”问:这两个句子中的字母各表示什么?再出示扑克牌“红桃

  A”,要求自己回答这里的A则表示什么?最后出示等式“0.5×x=3.5”,擦去等号及3.5,变成“0.5×x”后,问两道式子里的X各表示什么?根据自己的回答,教师结合板书进行小结:字母可以表示人名、地名和数,一个字母可以表示一个数,也可以表示任何数。

  这样,枯燥的概念变得生动、有趣,同学们在由衷的喜悦中进入了“字母表示数”概念的学习。

  4.置疑法

  通过揭示数学自身的矛盾来引入新概念,以突出引进新概念的.必要性和合理性,调动了解新概念的强烈动机和愿望。

  5.演示法

  有些教学概念,如果把它最本质的属性用恰当的图形表示出来,把数与形结合起来,使感性材料的提供更为丰富,则会收到良好效果,易于理解和掌握。

  如,学“求一个数的几倍是多少”的应用题,重要的是建立“倍”的概念。引进这个概念,可出示

  2只一行的白蝴蝶图,再2只、2只地出示3个2只的第二行花蝴蝶图,结合演示,通过循序答问,使自己清晰地认识到:花蝴蝶与白蝴蝶比较,白蝴蝶1个2只,花蝴蝶是3个2只;把一个2只当作1份,则白蝴蝶的只数相当于1份,花蝴蝶就有3份。用数学上的话说:花蝴蝶与白蝴蝶比,把白蝴蝶当作一倍,花蝴蝶的只数就是白蝴蝶的3倍,这样,从演示图形中让自己看到从“个数”到“份数”,再引出倍数,很快地触及了概念的本质。

  6.问答法

  引入概念采用问答式,能在疑、答、辩的过程中,步步探幽,引人入胜。

【八年级数学学习方法】相关文章:

八年级数学学习方法07-26

八年级数学简单学习方法09-14

八年级数学实用学习方法09-22

数学的学习方法06-14

数学的学习方法09-26

八年级数学学习方法指导06-06

[优]八年级数学学习方法09-22

关于数学的学习方法09-11

学习数学的学习方法05-18