- 相关推荐
[精品]高中数学的学习方法15篇
在平凡的学习、工作、生活中,大家总是需要不断学习的,找到适合的学习方法,能够让大家学习更有效率!想要找到正确的学习方法?下面是小编为大家收集的高中数学的学习方法,希望能够帮助到大家。
高中数学的学习方法1
摘要:课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好“三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。
关键词:知识,技能,方法
近年来,数学复习资料名目繁多,许多教师过于依赖各类资料,在复习中忽视了书本中的基础知识。这中做法实际上相当于在复习中失去了基石,现谈谈本人的一些看法。
一、重视基础知识、基本技能、基本方法
课本是考试内容的载体,是高考命题的依据,也是智能的生长点,是最有价值的资料,有相当多的高考试题是课本中基本题目的直接引用或稍作变形得来的,其用意就是引导我们要重视基础,切实抓好”三基”(基础知识、基本技能、基本方法)。最基础的知识是最有用的知识,最基本的方法是最有用的方法。在复习过程中,我们必须重视课本,夯实基础,以课本为主,重新全面地梳理知识,方法,注重知识结构的重组与概括,揭示其内在联系与规律,从中提炼出思想方法。在知识的深化过程中,切忌孤立对待知识,方法,而应自觉地将其前后联系,纵横比较、综合,自觉地将新知识及时纳入已有的知识系统中去,注意通用通法,淡化特殊技巧。
近年来高考数学试题的新颖性,灵活性越来越强,不少学生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而忽视了基础知识、基本技能、基本方法的复习。其实近几年的高考命题已经明确告诉我们:基础知识、基本技能、基本方法始终是高考数学考查的重点。选择题、填空题以及解答题中的基本常规题已达到整份试卷的80%左右,对基础知识的要求也更高、更严了。如果我们在复习中过于粗疏,或在学习中对基础知识不求甚解,都会导致在考试中判断错误。其实定理、公式推证的过程就蕴涵着重要的解题方法和规律,如果没有发掘其内在的规律就去做题,试图通过大量地做题去“悟”出某些道理,只会事倍功半。
二、抓刚务本,落实教材
数学复习任务重,时间紧,但决不能因此而脱离教材。相反,要紧扣大纲,抓住教材,在总体上把握教材,明确每一章、每一节的知识在整体中的地位、作用。
近年来的试题都与教材有着密切的联系,有的是直接利用教材中的例题、习题、公式定理的证明作为高考题;有的是将教材中的题目略加修改、变形后作为高考题;还有的是将教材中的题目合理拼凑、组合作为高考题。因此,一定要高度重视教材,针对教材所要求的内容和方法,把主要的精力放在教材的落实上,切忌刻意追求偏题、怪题和技巧过强的难题。
学生对基础知识和基本技能的理解与掌握是数学教学的基本要求,也是评价学生学习的基本内容。高中数学中的基础知识、基本技能主要包括②,基本的数学概念、数学结论的本质,概念、结论等产生的背景、应用,以及其中所蕴涵的数学思想和方法,和它们在后续学习中的作用。同时,还包括数学发现和创造的一些基本过程。
高中数学考试的内容选取,要注重对数学本质的理解和思想方法的把握,避免片面强调机械记忆、模仿以及复杂技巧。尤其要把握如下几个要点:
1、关于学生对数学概念、定理、法则的真正理解。尤其是,对数学的理解,至少包括能否独立举出一定数量的用于说明问题的正例和反例。
2、关于不同知识之间的联系和知识结构体系。即高中数学考试应关注学生能否建立不同知识之间的联系,把握数学知识的结构、体系。
3、对数学基本技能的考试,应关注学生能否在理解方法的`基础上,针对问题特点进行合理选择,进而熟练运用。同时,注意数学语言具有精确、简约、形式化等特点,适当检测学生能否恰当地运用数学语言及自然语言进行表达与交流。
三、加强通性通法的总结和运用
在复习中应淡化特殊技巧的训练,重视数学思想和方法的作用。常用的数学思想方法有:
1、函数思想。中学数学,特别是中学代数,可谓是以函数为中心(纲)。集合的学习,求函数的定义域和值域打下了基础;映射的引入,使函数的核心----对应法则更显现其本质;单调性、奇偶性、周期性的研究,是对映射更深入更细致的刻画;函数与反函数的研究,辨证全面地看待事物之间的制约关系。数列可以看成是特殊的函数。解方程f(x)=0,就是求函数y=f(x)的零点;解不等式f(x)0或f(x)0,就是求函数y=f(x)取正值、负值的区间;函数极限的研究,导数、微分、积分的研究,也完全是以函数为对象,为中心的。一句话,抓住了函数,就牵起中学代数的“牛鼻子”。
2、数形结合思想。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与树轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
数形结合的重点是“以形助数”。运用数形结合思想,不仅易直观发现解题途径,而且能避免复杂的计算与推理。大大简化了解题过程。这在解选择题、填空题中更显其优势,要注意培养这种思想意识,要争取做到“胸中有图,见数想图”,以开拓自己的思维视野。
3、分类讨论思想。所谓分类讨论,就是当问题所给的对象不能统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的答案。实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略。
分类原则:分类的对象确定,标准统一,不重复,不遗漏,分层次,不越级讨论。
分类方法:明确讨论对象的全体,确定分类标准,正确进行分类;逐类进行讨论,获取阶段性成果;归纳小结,综合得出结论。
4、转化思想。将未知解法或难以解决的问题,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法变换,化归为在已知知识范围内已经解决或容易解决的问题的思想叫做化归与转化的思想。化归与转化的思想的实质是揭示联系,实现转化。
熟练、扎实地掌握基础知识、基本技能和基本方法是转化的基础;丰富的联想、机敏的观察、比较、类比是实现转化的桥梁;培养训练自己自觉的化归与转化意识需要对定理、公式、法则有本质上的深刻理解和对典型习题的总结和提炼,要积极主动有意识地去发现事物之间的本质联系。“抓基础,重转化”是学好中学数学的金钥匙。
四、帮助学生打好基础,发展能力
教师应帮助学生理解和掌握数学基础知识、基本技能,发展能力。具体来说:
1、夯实基础、加强概念教学:历年高考都有40%左右分值比重的试题综合性较弱、难度较低、贴近教材,解答过程较为直观且命题方式相对稳定,用以考查学生基础知识的掌握情况。有40%左右分值比重的试题综合性较强,命题较为灵活,难度相对较高,用以考查学生的基本能力。知识是基础,能力的提高和知识的丰富是相互伴随的过程,要意识到基础知识的重要性,常规教学中一味求难求变的作法是不可取的,抓住基础知识是全面提高教学质量和高考成绩的关键。数学科学建立在一系列概念的基础之上,数学教学由概念开始,概念教学是基础的基础。数学具有高度抽象的特点,概念的形成是教学工作的难点。知识的发生发现过程是概念的形成过程,挖掘并精化知识的发生发现过程,直观展现知识的发生背景和前人的思维过程,是概念教学的关键。数学学习要理解诸多的概念及概念间的关系,概念教学贯穿于数学教学工作的始终。探讨概念间的关系,展示概念间的联系,把诸多概念有机地串接起来,有利于加深学生对概念的理解,有利于“辩证、普遍联系”的认识观念的形成,有利于探寻、解决问题能力的提高和数学思想方法的形成。
2、强调对基本概念和基本思想的理解和掌握。教学中应强调对基本概念的理解和掌握,对一些核心概念要贯穿高中数学教学的始终,帮助学生逐步加深理解。由于数学高度抽象的特点,注重体现基本概念的来龙去脉。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质。
3、重视基本技能的训练。熟练掌握一些基本技能,对学好数学是非常重要的。在高中数学课程中,要重视运算、作图、推理、处理数据以及科学计算器的使用等基本技能训练。但应注意避免过于繁杂和技巧性过强的训练。
随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化。一些新的知识就需要添加进来,原有的一些基础知识也要用新的理念来组织教学。因此,教师要用新的观点审视基础知识和基本技能,并帮助学生理解和掌握数学基本知识、基本技能和基本思想。对一些核心概念和基本思想(如函数、空间观念、数形结合、向量、导数、统计、随机观念、算法等)要在整个高中数学的教学中螺旋上升,让学生多次接触,不断加深认识和理解。在教学中要引导学生经历从具体实例抽象出数学概念的过程,在初步运用中逐步理解概念的本质,注重体现基本概念的来龙去脉。在新课程中,数学技能的内涵也在发生变化,在教学中要重视运算、作图、推理、数据处理、科学计算器和计算机的使用等基本技能训练,但应注意避免过于繁杂和技巧性过强的训练。
高中数学的学习方法2
一、 高中数学与初中数学特点的变化。
1、数学语言在抽象程度上突变。
不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。确实,初、高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
2、思维方法向理性层次跃迁。
高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步,因式分解先看什么,再看什么,即使是思维非常灵活的平面几何问题,也对线段相等、角相等、、、、、、分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了高要求。当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维。
3、知识内容的整体数量剧增
高中数学与初中数学又一个明显的不同是知识内容的“量”上急剧增加了,单位时间内接受知识信息的量与初中相比增加了许多,辅助练习、消化的课时相应地减少了。这就要求第一,要做好课后的复习工作,记牢大量的知识;第二,要理解掌握好新旧知识的内在联系,使新知识顺利地同化于原有知识结构之中;第三,因知识教学多以零星积累的方式进行的,当知识信息量过大时,其记忆效果不会很好。因此要学会对知识结构进行梳理,形成板块结构,实行“整体集装”,如表格化,使知识结构一目了然;类化,由一例到一类,由一类到多类,由多类到统一;使几类问题同构于同一知识方法;第四,要多做总结、归类,建立主体的知识结构网络。
二、不良的学习状态。
1、 学习习惯因依赖心理而滞后。
初中生在学习上的依赖心理是很明显的。第一,为提高分数,初中数学教学中教师将各种题型都一一罗列,学生依赖于教师为其提供套用的“模子”;第二,家长望子成龙心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套用的“模子”没有了,家长辅导的能力也跟不上了,由“参与学习”转入“督促学习”。许多同学进入高中后,还象初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。
2、 思想松懈。有些同学把初中的那一套思想移植到高中来。他们认为自已在初一、二时并没有用功学习,只是在初三临考时才发奋了一、二个月就轻而易举地考上了高中,而且有的可能还是重点中学里的重点班,因而认为读高中也不过如此,高一、高二根本就用不着那么用功,只要等到高三临考时再发奋一、二个月,也一样会考上一所理想的大学的。存有这种思想的.同学是大错特错的。因为在我们广州市可以说是普及了高中教育,因此中考的题目并不具有很明显的选拨性,同学们都很容易考得高分。但高考就不同了,目前我们国家还不可能普及高等教育,高等教育可以说还是属于一种精英教育,只能选拨一些成绩好的同学去读大学,因此高考的题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋一、二个月就考上大学,那到头来你会后悔莫及的。同学们不妨打听打听现在的高三,有多少同学就是因为高一、二不努力学习,现在临近高考了,发现自己缺漏了很多知识而而焦急得到处请家教。
3、 学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
4、 不重视基础。一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。
5、 进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如二次函数值的求法,实根分布与参变量的讨论,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。
三、 科学地进行学习。
学习集合应注意的几个问题
集合是中的重要概念,它是研究函数的工具 高一,也是命题的热点。同学们要想学好集合,必须在掌握概念的基础上,还应注意以下几点。
一、灵活运用集合中元素的性质
例1. 已知集合< > < > ,且A=B,求实数a,b的值。
解:由A=B,得
由集合相等的定义,得
解这两个方程组得 , 与 为所求
例2. 已知集合
即
当 即为所求。
二、掌握判定集合关系的
例3. 已知集合 ,判定集合A,B间的关系。
解:
由
由此可知集合A中 的分子为整数。
∴ ,求集合A、B间的关系。
解:
例5. 已知集合P、Q、M满足
由 ,且 ,实数p的取值范围。
分析: ,知 这一特殊情况
解:由
解得
综上知p的取值范围是
点子的排列方向
正常的骰子,相对两面的点子数目之和总是7;就此而言,上图中的三只骰子是正常的。但是,从点子的排列方向来看,其中有一只与其他两只不同。
在A、B、C这三只骰子中,哪一只与其他两只不同?
(提示:判定哪些面上的点子可以有不同的排列方向;然后判定这些排列方向在不同的骰子中是否一致。)
答 案
无论骰子怎样摆,一点、四点和五点的排列方向总是不变的。但是,两点、三点和六点却可以有如下不同的排列方向:
以下的推理,是以相对两面点数之和为7的事实为依据的。
如果骰子B和骰子A相同,则骰子B上的两点的排列方向必定与图中所示的呈对称相反。所以骰子A和骰子B不是相同的。
如果骰子C和骰子A相同,则骰子C上的三点的排列方向必定与图中所示的呈对称相反。所以骰子A和骰子C是不相同的。
如果骰子C和骰子B相同,则骰子C上的六点应该是像图中所示的排列方向。
由于题目中指明有两只骰子相同,因此相同的必定是骰子B和骰子C。与它们不同的便是骰子A了。
高中数学的学习方法3
学生升入高中后,能否适应高中数学的学习,是摆在高中新生面前的一个亟待解决的问题,除了学习环境、教学内容和教学因素等外部因素外,同学们应该转变观念、提高认识和改进学法,本文就此问题谈点看法。
高中数学是初中数学的提高和深化,初中数学在教材表达上采用形象通俗的语言,研究对象多是常量,侧重于定量计算和形象思维,而高中数学语言表达抽象,逻辑严密,思维严谨,知识连贯性和系统性强。
一、正确对待学习中遇到的新困难和新问题
在开始学习高中数学的过程中,肯定会遇到不少困难和问题,同学们要有克服困难的勇气和信心,胜不骄,败不馁,有一种“初生牛犊不怕虎”的精神,愈挫愈勇,千万不能让问题堆积,形成恶性循环,而是要在老师的引导下,寻求解决问题的办法,培养分析问题和解决问题的能力。
要提高自我调控的“适教”能力。一般来说,教师经过一段时间的教学实践后,因自身对教学过程的不同理解和知识结构、思维特点、个性倾向、能力品质、教学观念、职业经历等原因,在教学方式、方法、策略的采用上表现出一定的倾向性,形成自己独特的、鲜明的、一贯的教学风格或特点。作为一名学生,让老师去适应自己显然不现实,我们应该根据教的特点,从适应教的目的出发,立足于自身的实际,优化学习策略,调控自己的学习行为,使自己的学法逐步适应老师的教法,从而使自己学得好、学得快。
要将“以老师为中心”转变为“以自己为主体,老师为主导”的学习模式。数学不是靠老师教会的,而是在老师引导下,靠自己主动思维活动去获取的,学习数学就是要积极主动地参与教学过程,并经常发现和提出问题,而不能依着老师的惯性运转,被动地接受所学知识和方法。
要养成良好的个性品质。要树立正确的学习目标,培养浓厚的学习兴趣和顽强的学习毅力,要有足够的学习信心,实事求是的科学态度,以及独立思考、勇于探索的创新精神。
要养成良好的预习习惯,提高自学能力。课前预习而“生疑”,“带疑”听课而“感疑”,通过老师的点拨、讲解而“悟疑”、“解疑”,从而提高课堂听课效果。预习也叫课前自学,预习的越充分,听课效果就越好;听课效果越好,就能更好地预习下节内容,从而形成良性循环。
二、要养成良好的审题习惯,提高阅读能力
审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到目要“宁停三分”,“不抢一秒”,要在已有知识和解题经验基础上,译字逐句仔细审题,细心推敲,切忌题意不清,仓促上阵,审数学题有时须对题意逐句“翻译”,将隐含条件转化为明显条件;有时需联系题设与结论,前后呼应挖掘构建题设与目标的桥梁,寻找突破点,从而形成解题思路。
要养成良好的演算、验算习惯,提高运算能力。学习数学离不开运算,初中老师往往一步一步在黑板上演算,因时间有限,运算量大,高中老师常把计算留给学生,这就要同学们多动脑,勤动手,不仅能笔算,而且也能口算和心算,对复杂运算,要有耐心,掌握算理,注重简便方法。
要养成良好的解题习惯,提高自己的思维能力。数学是思维的体操,是一门逻辑性强、思维严谨的学科。而训练并规范解题习惯是提高用文字、符号和图形三种数学语言表达的有效途径,而数学语言又是发展思维能力的基础。因此,只有以本为本,夯实基础,才能逐步提高自己的思维能力。
解完题目之后,要养成不失时机地回顾下述问题:解题过程中是如何分析联想探索出解题途径的?使问题获得解决的关键是什么?在解决问题的过程中遇到了哪些困难?又是怎样克服的?这样,通过解题后的回顾与反思,就有利于发现解题的'关键所在,并从中提炼出数学思想和方法,如果忽视了对它的挖掘,解题能力就得不到提高。因此,在解题后,要经常总结题目及解法的规律,只有勤反思,才能“站得高山,看得远,驾驭全局”,才能提高自己分析问题的能力。
三、要养成纠错订正的习惯,提高自我评判能力
要养成积极进取,不屈不挠,耐挫折,不自卑的心理品质,对做错的题要反复琢磨,寻找错因,进行更正,养成良好的习惯,不少问题就会茅塞顿开,割然开朗,迎刃而解,从而提高自我评判能力。
要养成善于交流的习惯,提高表达能力。在数学学习过程中,对一些典型问题,同学们应善于合作,各抒己见,互相讨论,取人之长,补己之短,也可主动与老师交流,说出自己的见解和看法,在老师的点拨中,他的思想方法会对你产生潜移默化的影响。因此,只有不断交流,才能相互促进、共同发展,提高表达能力。如果固步自封,就会造成钻牛角尖,浪费不必要的时间。
“学而不思则罔,思而不学则贻”。在学习数学的过程中,要遵循认识规律,善于开动脑筋,积极主动去发现问题,进行独立思考,注重新旧知识的内在联系,把握概念的内涵和外延,做到一题多解,一题多变,不满足于现成的思路和结论,善于从多侧面、多方位思考问题,挖掘问题的实质,勇于发表自己的独特见解。因为只有思索才能生疑解疑,只有思索才能透彻明悟。一个人如果长期处于无问题状态,就说明他思考不够,学业也就提高不了。
每学完一节一章后,要按知识的逻辑关系进行归纳总结,使所学知识系统化、条理化、专题化,这也是再认识的过程,对进一步深化知识积累资料,灵活应用知识,提高概括能力将起到很好的促进作用。15、要养成做笔记的习惯,提高理解力。为了加深对内容的理解和掌握,老师补充内容和方法很多,如果不做笔记,一旦遗忘,无从复习巩固,何况在做笔记和整理过程中,自己参与教学活动,加强了学习主动性和学习兴趣,从而提高了自己的理解力。
总之,同学们要养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,只有这样,才能取得事半功倍之效。
高中数学的学习方法4
1、针对各个板块进行学习
高中数学总的来说可以分为立体几何、函数、数列等13个知识版块。学习的时候,应针对自己较弱的版块,在某一段时间进行集中的强化训练,从中掌握解这类题的基本思路和方法。
2、重视基础题
高考的'趋势是淡化技巧,重视通法,很多时候一些数学基础很好的同学因为犯了低级错误而拿不到高分。我们平时不能专找难题做,轻视基础题,其实高考中为数不多的难题也就是若干个基础题的组合。克服粗心毛病是每天坚持做一定量的数学题,增加熟练程度,并且有意识地暗示自己集中注意力,提高正确率。
3、周期回顾错题
很多过来人都推荐错题本,这种方法很有效但不是适合所有人。同学们可以尝试把所有做错的题做上标记,一周抽一天把本周做错的题再做一遍,避免再犯类似错误。错题的回顾一定要按时而且要反复,这些前期的工作都推到高三可能时间会比较紧张。改错本上可以没有很多的题目,但是一定要有平时经常忽略的易错点和容易思维断点的知识点。
高中数学的学习方法5
要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 下面,朴新小编给大家带来高中数学学习方法和技巧。
有意识培养自己的各方面能力
数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。
平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的`解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。
传授科学的思想方法
高中数学的学习不能满足于盲目地在题海中奋战,更加不能就题来论题。特别是高中阶段的数学学习,要特别注重掌握数学的思想方法。数学思想方法如果按层次分,可分为数学一般方法、逻辑学数学方法与数学思想方法。其中,数学一般方法主要是数学解题的具体方法及相关技能、技巧,比如高中数学里的配方法、换元法、待定系数法和判别式法等。逻辑学数学方法主要是指数学的思维方法,主要有分析法、综合法、归纳法和试验法等。数学思想方法主要有函数与方程思想、化归思想及数形结合思想等。
通过对数学解题过程中最富有特色的典型智力活动进行分析和归纳,可以提炼出分析、解决数学问题的规律来,也就是要先弄清问题,再拟定解题计划,接着实现解题计划,最后进行回顾这四个阶段。在数学教学中,教师要把好审题关、计算关及数学表达关,要求学生对概念、公式和定理等知识点进行准确记忆,并能牢固掌握,还要学会运用这些知识开展计算、证明和逻辑推理。只要把握高中数学学习的规律,掌握了学习的方法,无论遇到任何题目,都能迎刃而解。
高中数学的学习方法6
在大学课程的学习中,有诸多的公共基础课程,而大学数学就是其中很重要的一门,是几乎各个专业后续学习的基础,同时也是培养我们逻辑思维能力的有力工具,大学数学对刚刚从高中数学模式转变过来的学生学习有着非常大的影响。通过上课现状来看,大学一年级学生普遍反映数学难学,学习积极性不高。数学本身就是一门比较抽象的、而且逻辑性较强的课程,如果没有动力和积极性去研究,非常不容易把握。而且从高中数学跨越到大学数学,跨度较大,在一开始的学习中感到非常不适应。另外,大学数学的自主学习能力要求较高,突然脱离了传统的学习模式,导致我们有点手忙脚乱,抓不着重点。在从高中数学到大学数学的跨越中,我们首先要看到两者之间的差异,进而采取有效的措施衔接两者,使我们在大学数学的学习中能很好的从高中数学的学习模式中过渡过来。
一、学习过程中大学数学与高中数学存在的主要差异
(一)高中数学与大学数学在教学目标上存在的差异所以多数时候就是运用题海战术应付考试取得满意的结果,高中数学比较淡化对体系的认知。而大学数学老师是培养学生的综合运用能力,通过对数学基础知识的学习,是我们学生了解高数的思想,用科学的方法应对实际中的问题,并探索创新能力,同时大学数学很重要的一点是培养学生的自学能力。
(二)高中数学与大学数学在教学方法上存在的差异高中数学在学习进度保证的同时赶超的是知识点的掌握程度。进度相对来说比较慢,主要是通过课堂高密度提问和细致的分析,反复对知识点进行训练,将知识点渗透到学生的理解中,并且在高中数学中老师是有足够的时间去辅导学生练习的。而大学数学,课程进度就相当得快,而且课堂的知识容量非常大,学生并不能当堂就消化掉所有的东西,大学数学更注重的是概念的理解和实际的运动,比较侧重于学生的自主学习能力,在认识数学理念的同时,引导学生自主的.思考问题并运用到实际中解决问题。
(三)高中数学与大学数学在教学模式上存在的差异高中数学,教师处于主导地位,学生处于被动地位。就是老师教什么学生学什么,他注重的是知识的传授和对学生知识掌握的训练。而大学数学注重的是知识产生的过程,在大学数学的教学中,学生处于主导地位,教师只是引导。通过教师的引导,自主学习和探讨,激发学生学习的积极性和创造力。
(四)高中数学与大学数学在知识结构上存在的差异近代数学思想渗透在高中数学中,如函数、集合、概率等,广度深度上比较浅显。而且高中数学重视的是理论的推导,概念内涵不够深。而大学数学,理论性比较强,内容比较抽象,而且数学符号大量出现,学生接受起来比较困难。
二、找到大学数学与高中数学的衔接之处
(一)发现大学数学与高中数学教学内容的衔接之处
首先要精简两者重复的内容,有些知识既出现在高中数学中,也出现在大学数学中,作为这一部分就需要精简知识,我们在学习的时候就要做对此部分知识的筛选。其次就是要补充高中数学删除或涉及较浅的内容,有一些大学数学中的知识在高中数学中略被提及,讲解较浅,或者直接被删除放出,作为这一部分知识,我们就要作为大学数学的必备知识抓起来,这样才能避免知识的脱节。两者相互结合才能加强对整个数学知识的了解,才不至于阻碍后面知识的深入。再次就是要加强所学知识的应用型。大学数学讲究的是能活学活用,学到的知识能与生活实际联系起来,高中数学的知识就如我们身边的必备工具一样,我们结合两者的长处在生活中加以运用,激发我们对于数学的学习兴趣。
(二)寻找大学数学与高中数学数学思想与学习方法的衔接之处
高中数学引导学生利用所学知识解决问题,让学生逐渐建立科学的数学思想方法提高学生的数学思维能力。大学数学是高中数序的深层次教育,就要利用现代的思想和方法引导传统知识,加强现在数学意识的渗透。在实际教学过程中关注当代数学研究的前沿问题将其渗透到数学知识的应用中,安排开放性问题供学生业余进行探究。在高中数学中多媒体技术已经开始使用,高中数学知识已经变得比较直观生动,非常有利于学生掌握和理解知识。
三、做好大学数学与高中数学学习方法转换的方法
(一)大学数学学习要注重课程的课前预习
上课知识量大,涉及面广以及理论性强是众所周知的大学数学的特点,并且内同极具抽象性和严谨性,所以要在课堂上很好的消化知识就要做适当的课前预习。只有课前预习,才能知晓自己的疑问,带着问题上课,能够有针对性的解决自己的问题,效率大大提高。
(二)做好大学数学的课堂听课笔记
将老师在课堂上所讲解的重点难点记录下来,课后好好钻研,随时回顾,提高学习主动性。
(三)课后善于归纳和总结
大学数序知识每节之间都是紧密相连层层递进的,我们只有做好归纳总结,才能将知识出阿联,形成完整知识构架和体系。
(四)善于提出自己的问题
对大学数序的学习要善于思考,善于提问,用已有的知识,自己去发现解决新问题,或者在原有的基础上领悟一个新道理,从而产生新的思维,培养创新精神和意识。
高中数学和大学数学共同承担着构架数学知识体系的重担,二者缺一不可,密不可分。两者的有效衔接才能发挥更大功效。通过对大学和高中数学之间的差异以及衔接之处的简要分析,从教学内容和教学思想两个方面提出高中数学和大学数学教学衔接的应对策略期望,对于提高我们的大学数学学习效果起着重要的作用。
高中数学的学习方法7
一、高中数学快速提分的方式
1、背概念、公式、定理、图像
如果你现在是三四十分的话,你第一件事就是要背上面的这些,现在跟着老师走一轮,那么要把老师提到过的每一个概念,公式定理与图像都背下来,刚开始会很辛苦,毕竟高中数学的一些概念还是比较抽象的,但是小数老师告诉你,你背一段时间后,你会有很明显的变化的!
要求:每个概念公式定理图像都要背下来哦,你可以找你同桌提问你,比如,提问函数,你要知道函数的概念,函数的相关性质都有哪些,这些性质的概念又是什么等。现在你可以不理解,但必须滚瓜烂熟!
注:这是最痛苦的一个阶段哦,加油!
2、背例题老师上课会讲一些例题,那第二步就是要把这个例题背下来,包括题目条件,求解与解法。
达标要求:你能合上课本,自己写出题目条件与求解,并能默写出步骤来!要找到题目中的关键词,也就是题眼,也就是你之前背的概念公式定理图像中的出现的那些词,这才是题眼!因为解题的时候,我们的解题思路从哪来,就是从我们学过的知识转化过来的!
注:这一步相对上一步来说,简单了一点,因为题目是具体的,不抽象,背起来稍微容易一点!但是要注意抓住重点,那就是例题中的题眼!不要只记里面的数字啊,否则,数字换一下,你就不会做了!
3、对例题的每一步转化写上来龙去脉
例题背下来之后,你也能分辨出题目的题眼了,也会了解题步骤了,接下来就要调动你的大脑来思考了!你要把每一步涉及到的公式概念都写出来,比如:求函数的定义域,你记过求定义域的方法,那让你求的定义域时,首先是二次根号下被开放式必须大于等于0,所以有lgx大于等于0,又因为这是一个对数函数,想一想对数函数的图象,找到函数值大于等于0对应的x值就是此函数的定义域了!
要求:每一步都要弄清楚,你不知道转化的,一定要问,此时可以不计较数量,重视质量就可以了!这个质量是你自己真正能写出来了!
注:数学题逻辑思维比较强,一定要分析每一步,不要感觉自己会了,就不写了!
4、重新做例题(不是把答案背上去哦)
你弄明白之后,接下来就是要真正把他当做一道新题去做了,你完全按照做新题的方法,审题,找到题眼,然后想一想这些题眼该怎么转化,以前自己学过的知识怎么运用,不同知识之间怎么结合,然后一步步的去做这道题,在做题的过程中,还要注意计算的'易错点!
二、巩固数学基础的方式
首先课堂紧跟老师,认真听每一节课,记好课堂笔记,有些学生喜欢自己课后自学,课堂不爱听讲,这是极错误的,因为老师对于高考的了解和对知识的掌握,远远胜过我们自学,紧跟老师是打好基础最关键的一步。
对课本基础知识的学习,我们强烈建议大家使用思维导图,可以把课本上的知识都画成树状层,这样更容易理解、记忆,这样知识点不再是孤立而是成了一个网,这比光看书效果要好很多很多。
此外,想学好数学,大量刷题确实很有必要,但你真的会刷题吗?多数同学虽然也做了大量的题目,但成绩还是不好,核心原因就是做题忽略了最重要的一步,那就是总结反思。每做完一道题目,大家还需要总结一下,问一下自己下面这些问题:它考查了哪些知识、自己有没有掌握、题目的解题思路在哪里、突破口是什么、属于哪种题型、此类题型有什么共同的套路、此类题型应该用什么方法来解答。只有多问自己几个为什么,你才能真正吃透一道题,达到做一道题会一类题。
做题并不是越多越好,要知道题海战术只是手段,我们最终的目的还是通过做题加深对知识的理解,掌握解题套路,提高做题速度,如果做题不总结,你刷再多题效果也不会明显。
高中数学的学习方法8
听好课
在课堂上集中注意力是想要学好一门科目的关键,高中数学课也不例外。数学也是一门极难学懂的课程,所以学生在课上课下都要花费大量的时间,数学也不是一门只要掌握好方法就能学懂的学科,所以在高中数学的学习上,一定要好好听课,汲取老师的经验,转化为自己知识,才能把握住一些技巧性的东西,从而提高自己数学的分数。
勤做题
相信很多学生在高三的时候都经历了疯狂做题的阶段,每天几套几套的卷子,做的学生心理疲惫。但是题海战术面对我国现在高中生的普遍水平还是很管用的。如果你不像其他学霸那样有着过人的天分,那么在高中数学的学习上,就一定要多做题、勤做题。把每个你不会的题型都多做几遍,做的多了,数学的水平自然也就上去了。
会归纳
在数学这门学科中,最重要的是学会归纳。比如把你不会的知识、不懂的知识、易错的知识都整理到不同的本子上,碰到类似的题就归纳进去,这样对于高中数学的学习也是非常有用的。很多学生也是运用了这样的方法学习高中数学,不仅是数学这门学科,在其他学科的学习上也要注意运用归纳的方法。这样才能时常纠正自己的错误,并在高中数学上取得更好的成绩。
高中数学学习方法
1怎么才能提高高考数学成绩
一、看课本补基础
基础很差,那就不要总想着有什么捷径,不要给自己找理由去偷懒,积累的过程从来就没有捷径,看课本补上基础,是一个缓慢但却最实际最靠谱的方法,特别是高三第一轮复习的时候,对于概念,公式,如何推导公式等一定要重点弄懂,还有每个知识点后面的例题,至于有同学会问那些课后习题需要做么?我觉得应该没有那么多时间,而且那些针对性也不强,毕竟有些必修课本是面向全部学生,没有分文理科的。
二、跟着老师步骤去看课本补基础
在第一轮复习的时候,很多同学会觉得很多知识点都不懂并且还会有不知从哪里去看课本好,这时老师复习节奏很重要,你就不要自己计划今天要复习课本哪里,第一轮复习可以跟着老师步骤,老师讲到哪,就去看这部分知识点的内容,具体按照上一步骤。
2提高高考数学成绩的技巧
背例题
这个是一个比较冷门但是效果奇好的提高数学成绩的方法。这个办法就是,遇到你不会的题目,如果怎么都做不出来,你就不用花时间弄懂它了,把它背下来,但是不要什么题都背,要背那种中等难度的题,高难的题一般以后也用不上,简单的你自己就会做。这样做一段时间,你会发现你节省了很多时间,遇到不会的题你也会往里面“套答案”了。
课后复习
高中数学一定要注意的一点就是时效性,一定要在课后及时复习,这样做的原因就是如果你隔几天在看,你会发现你的知识点已经忘记的差不多了,这个时候你在复习,就产不多相当于又重新在学一次,所以“趁热打铁”这个成语同样适用于高中数学的学习。其次,我们复习过得知识也不是一劳永逸的,每周、每个月都最好总结一下。这样有利于形成我们的知识网络,更加方便记忆。
3提高高考数学成绩的窍门
仔细研读教材
对于高考的数学来说,高考的出题一直是源自教材的,所以在高三学生复习的过程中,需要认真阅读数学的教材,并且将教材中的知识、概念、例题、等知识点加以分析,在数学的知识点中,有很多知识点网络的.交汇处是历年高考的高频考点,想要考好数学的学生可以将数学课本中的知识串成串,连成线,汇成面,并且将高考中出现的各个知识点加以练习并相互结合。
找到适合自己学习数学的方式
每个高三学生的学习情况都不一样,所以针对于他们的训练方式也不同。但是对于训练的目标有很多相同之处。所以在高三学生学习数学备考的时候应该合理安排训练。首先就需要高三学生弄清楚自己的需要,无论是数学的试卷还是专题,都需要自己一点一点来做。
并且弄清楚自己那些知识点存在着问题,就要多做一些此类知识点。其次就是要制定一个合理的目标,学习要为了自己的成绩而学,不是为了老师和家长而学习,在做题之前首先要制定一个目标,通过一些训练的方式来提高自己的数学做题的准确率。
高中数学的学习方法
1.抓住重点听讲
上课前我是一定要预习的,有时间就看的仔细些,老师要讲什么内容,有什么定义、定理和公式我先都记住,再看一些例题去理解定义和定理的应用,脑子里会形成那些我明白了,那些不理解,记在本子上。上课的时候,老师嘴一张开我就知道老师要讲什么了,会的我就看自己的书,不会的我就仔细听讲。
我善于抓住重点去听讲,记的时候,我看其他同学是什么都记,我不是,凡是书上有的内容我从不记,比如定义、定理和公式和书上的例题。我只记一些书上没有的内容,我不会的内容,还有老师说这是重点或难点的内容。我经常在书上做一些纪录,我的书看完是满书涂鸦,不适合别人看了,以后自己一翻书,我就会从我的纪录上回忆这一节的全部内容,一翻书就回忆,经常翻就记的很牢了。
2.多看辅导书
老师布置的作业我肯定都要做完,但我不会满足于老师布置的作业,我还要看一些辅导书籍,做一些辅导书籍上的作业,直到我能理解定义、定理和公式的含义,一道题尽量用多种办法去解题,做到举一反三。我经常买和课程有关的辅导书籍看,每一门课程我都有好几本相关的辅导书籍。
3.定期整理归纳
每学完一章的内容,我都要进行小结。把这章的内容归纳一下,把定义、定理、公式和这个定义、定理、公式有代表行的练习题写出来,最后就是用几句话把这一章的内容概括一下,目的是方便记忆。我写在一张纸上,放在口袋里,随时会拿出这张纸来看一下。我一般不看完,只看前面几个字,然后去想后面的内容,实在想不出来才再看一下的。考试前每一科目我都是把内容归纳后,写在纸上放在口袋里,跑到没人的大树底下,一会看一下归纳的纸条,背诵内容和例题。
高中学数学的技巧
1.重视课堂的学习效率
新知识的接受和数学能力的培养,主要是在课堂上进行,所以要特别重视课堂的学习效率,上课时要紧跟老师的思路,积极开展思维,预测下面的步骤,比较自己的解题思路与老师所讲的有哪些不同。课后要及时复习,不留疑点,对不懂的地方要及时请教老师或同学,切忌不懂将懂,或将不懂的地方跳过。课后还要注重基础知识的学习和基本技能的培养,要多记公式、定理,因为它们是学好数学的关键和必备条件。
2.多做习题,养成良好的解题习惯
要想学好数学,多做题是不可避免的。当然,多做题并不等于搞题海战术。做的题目要有代表性,不能胡子眉毛一把抓,碰到哪道题就做哪道题。有些题适合我们做,而有些题却超出了我们的能力范围,做这些题目只能是浪费我们宝贵的时间,不会达到任何效果。做的题要难易适中,通过做些有代表的题目,要力争能举一反三。数学是一门逻辑性很强的学科,需要缜密的思维,解题要有条理,在做题的过程中学会熟练运用正确的解题方法,掌握一些基本题型的解题规律。只有平时大量的训练,见多了、做多了,自然就熟能生巧,考试的时候就会应付自如,不至于乱了阵脚。
3.调整好心态,正确对待平时的考试
大家都知道,数学是个逻辑性极强的学科,要求有清醒的头脑,数学运算过程中的每个解题步骤都很重要,漏掉了哪个步骤都是不行的。因此,在做数学题的时候,保持一个平静的心态是很重要。这就要求我们平时要学会善于把握自己的情绪,要能及时地调整好自己的心态,戒骄戒躁,千万不能一遇到解不出来的题目就焦躁不安。焦躁是学习数学的大忌。
高中数学的学习方法9
"八引导",即学科价值引导、爱心引导、兴趣引导、目标引导、竞赛引导、环境引导、榜样引导、方法引导。
1.学科价值引导
就是要让学生明白数学的学科价值,懂得为什么要学习数学知识。
一是要让学生明白数学的悠久历史;
二是要让学生明白数学与各门学科的关系,特别是它在自然科学中的地位和作用;
三是要让学生明白数学在工农业生产、现代化建设和现代科学技术中的地位和作用;四是要让学生明白当前的数学学习与自己以后的进一步学习和能力增长的关系,使其增强克服数学学习心理障碍的自觉性,主动积极地投入学习。
2.爱心引导
关心学生、爱护学生、理解学生、尊重学生,帮助学生克服学习上的困难。特别是对于数学成绩较差的学生,教师更应主动关心他们,征询他们的意见,想方设法让他们体验到学数学的乐趣,向他们奉献一片挚诚的爱心。
3.兴趣引导
一是问题激趣。"问题具有相当难度,但并非高不可攀,经努力可以克服困难,但并非轻而易举;可以创造条件寻得解决问题的途径,但并非一蹴而就";
二是情景激趣,把教学内容和学生实际结合起来、创设生动形象、直观典型的情景,激起学生的学习兴趣。此外,还有语言激趣、变式激趣、新异激趣、迁移激趣、活动激趣等等。
4.目标引导
数学教师要有一个教学目标体系,包括班级目标、小组目标、优等生目标和后进生目标,面向全体学生,使优等生、中等生和后进生都有前进的目标和努力的方向。其目标要既有长期性的又有短期性的,既有总体性的又有阶段性的,既有现实性的又有超前性的。对于学生个体,特别是后进生和尖子生,要努力通过"暗示"和"个别交谈"使他们明确目标,给他们加油鼓劲。
5.环境引导
"加强校风、班风和学风建设,优化学习环境;开展"一帮一"、"互助互学"活动;加强家访,和家长经常保持联系,征求家长的意见和要求,使学生有一个"关心互助、理解、鼓励"的良好学习环境。
6.榜样引导
数学教师要引导学生树立自己心中的榜样,一是要在教学中适度地介绍国内外著名的数学家,引导学生向他们学习;二是要引导学生向班级中刻苦学习的同学学习,充分发挥榜样的'"近体效应";三是教师以身示范,以人育人。
7.竞争引导
开展各种竞赛活动,建立竞争机制,引导学生自觉抵制和排除不健康的心理因素,比、学、赶、帮争先进。
8.方法引导
在数学知识教学、能力训练的同时,要进行数学思维方法、学习方法、解题方法等的指导。总之,中学生数学学习的心理障碍是多方面的,其消极作用是显而易见的,产生的原因也是复杂的。与此相应,引导中学生克服心理障碍的方法也应是多样的,没有固定模式。我们数学教师要不断加强教育理论的学习,及时准确地掌握学生的思维状况,改进教法,引导学生自觉消除数学学习的心理障碍,使他们真正成为学习数学的主人,让素质教育在数学教学这块园地中开出鲜艳的花朵,结出丰硕的果实。
高中数学的学习方法10
现代数学上的三大难题:
一是有20棵树,每行四棵,古罗马、古希腊在16世纪就完成了16行的排列,18世纪高斯猜想能排18行,19世纪美国劳埃德完成此猜想,20世纪末两位电子计算机高手完成20行纪录,跨入21世纪还会有新突破吗?
二是相邻两国不同着一色,任一地图着色最少可用几色完成着色?五色已证出,四色至今仅美国阿佩尔和哈肯,罗列了很多图谱,通过电子计算机逐一理论完成,全面的逻辑的人工推理证明尚待有志者。
三是任三人中可证必有两人同性,任六人中必有三人互相认识或互相不认识(认识用红线连,不认识用蓝线连,即六质点中二色线连必出现单色三角形)。近年来国际奥林匹克数学竞赛也围绕此类热点题型遴选后备攻坚力量。(如十七个科学家讨论三课题,两两讨论一个题,证至少三个科学家讨论同一题;十八个点用两色连必出现单色四边形;两色连六个点必出现两个单色三角形,等等。)单色三角形研究中,尤以不出现单色三角形的极值图谱的研究更是难点中之难点,热门中之热门。
归纳为20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。
高中数学成绩下降是什么原因
智者形容数学:“思维的体操,智慧的火花”。“最能考察或验证一个人具备智慧多少的一门学问或学科”!在当今知识经济时代,数学正在从幕后走向台前,它与计算机技术的结合在许多方面直接为社会创造价值,推动了社会生产力的发展。数学是人类文化的重要组成部分之一,它已成为公民所必须具备的一种基本素质。数学在形成人类理性思维的过程中发挥着独特的、不可替代的作用。于是呼,冲刺高考时选学理者多多,且发誓要用数学拉动高考总成绩者众多。可喜可贺!作为衡量一个人能力的重要学科---数学。从小学到,对它情有独钟的大有人在,且大都投入了大量的时间与精力.然而我们也不能忽视另一种事实:并非人人都是成功者!许多小学、时期的数学成绩佼佼者,进入高中阶段,第一个跟头就栽在了数学上。对选学文科的成功者的一项调查也表明,虽然他们高中也很想学好数学,可数学成绩就是提不上来,于是折射形成了“最怕”见高中数学老师的现象。这种“惧怕”高中数学的现象目前是比较普遍的,应当引起重视。当然造成这种现象的原因是多方面的。本文仅就学生的学习状态方面浅谈一下影响高中数学成绩下降的原因及解决方法面对众多初中数学学习的成功者沦为高中学习的失败者,笔者对他们的学习状态进行了调研。结果表明:造成成绩滑坡的主要原因有以下几个方面.
1.被动学习.许多同学进入高中后,还像初中那样,有很强的依赖心理:跟随老师惯性运作。没有掌握学习的主动权.其表现有:不定计划,坐等上课,课前不预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”.一切的一切造成没能真正理解所学内容的无奈表态。
2.学不得法.老师上课一般都要讲述知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法.而一部分同学上课不能做到专心听讲,对要点听不清或听不全。于是笔记记了一大本,问题留了一大堆。而课后呢,又不能及时巩固、总结,找不到知识间的联系,只是一味地赶做作业,乱套题型。对概念、法则、公式、定理一知半解,死记硬背的结果是一味地“机械模仿”。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套。最终是事倍功半,收效甚微.
3.不重视基础.一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,一贯做法是只求知道怎么做,不去认真演算书写。其心理诱因是仅对难题感兴趣,以示自己的“水平”高。这种好高鹜远,重“量”轻“质”的做法导致的结果是陷入题海,不自拔.而到正规作业或考试中却是演算出错或中途“卡壳”.
4.不具备进一步学习条件.高中数学与初中数学相比,知识的广度、深度更进一程,能力要求更进一步.这就要求必须掌握基础知识与基本技能,为进一步学习作好充分准备.高中数学很多地方难度大、方法新、分析能力要求高.如:二次函数在闭区间上的最值问题,函数值域的求法问题,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合的应用和实际应用问题解答等.客观上,这些问题的能力要求就是数学学习的分化点,更何况有的数学知识点还是高、初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的.
所以,高中学生仅仅有想学的'念头是不够的,还必须“会学”。要讲究科学的学习策略和方法,以此提高学习效率,变被动学习为主动学习.针对学生学习中出现的上述情况,教师应当采取以加强学法指导为主,化解分化点为辅的对策:
1.加强学法指导,培养良好学习习惯。良好的学习习惯包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面.
高中数学学习方法
编者按:小编为大家收集了“高中数学学习方法:高一升高二数学学习心得”,供大家参考,希望对大家有所帮助!
度过了貌似很轻松愉快的高一生活,我们昂首阔步来到了高二,对于数学一科,相当多的同学觉得高一阶段的知识非常可怕,不夸张的说高一阶段的知识比整个初中的知识问题还要多。如今到了高二,是不是知识更多更难了呢?
个人认为并不是这样的,高一阶段的知识强调的是理解,而高二阶段强调的是功力和技巧。差别莘不在于难度,而在于学习的侧重点,可以说高二的很多知识是对高一知识的深化和拓展。举个例子,高一阶段我们学习了函数的相关性质,其中很重要的一条是单调性。高一我们对这个知识点的要求是会用“比较法”判断单调性,还要通过对图像的分析来对函数单调性有直观的感受。这些都昌对函数单调性的理解。到了高二阶段,文科和理科学生都要学习一样新的工具——导数,也就是我们庆不做函数图像,也不用“取点比较”的情况下直接判断函数的单调性和单调区间。而这种处理单调性问题的新方法需要的就是熟练掌握技巧和扎实的基本功。
还有几何方面,高一阶段我们大多数同学学过了直线和圆,这是解析几何的初步,相信很多同学对于解析几何复杂的运算至今还“意犹未尽”。那么到了高二阶段,我们将要学习更加复杂的三类曲线——椭圆、双曲线、抛物线。运算上难度大大增加,图形的复杂度也大大增加,但是就本质来说,考察的核心还是“在图形中寻找线索,在计算中得到结果”的解题思路。另外立体几何中还要引入空间向量的方法,实际也是把几何问题代数化,使同学用在复杂的立体图形中找辅助线了,当然,空间向量法带来的运算量也是相当大的。
最后在一些小知识上也有所深化,还记得当初在学习概率的时候,我们实际没有学习任何的计算方法,当时我们算概率的时候只能一个一个的数出来,如果题目的数稍微大一点的话我们就不得不把大量的时间浪费在数数上,在高二我们就会学到高手是怎样数数的,也就是所谓的计数原理,到时候同学业们就会知道“乘法”比“加法”究竟能快多少。也能彻底搞清楚生活中的随机事件里究竟蕴含了怎样的数学原理。
总体来说,高二数学的难度比高一要大,但是如果同学们在高一的时候对知识有深入的理解的话,高二阶段的知识也就只是个深化练习的过程了,这就要求同学们在高二的时候造成不要放松,这个时期是最需要大量做题,大量练习的时期,错过了这个时期就再也没有机会超越别人了。有人会想高三再努力也不迟,殊不知高三的时候所有好好学习的人都会拼命的做题,拼命地练习,在那时想赶超别人几乎是不可能完成的任务。高三环境是不努力的人必然跌入谷底。努力的人也只可以保证不下降。也就是说想超过别人,走在别人前面,高二已经是最后的机会了。
对于高一阶段知识掌握的不够扎实的同学,高二也是唯一可能提高的机会了,正像上文所说,高二的知识很多是高一知识的扩展和深化,也就是说如果之前学习的时候没有掌握好,那么高二的学习就既是学习过程又是复习过程。高中阶段学习节奏之快使得一开始落后一点的同学在之后的学习过程中几乎没有什么时间再回过头来重新学习,也就是说如果想补救之知识漏洞,高中阶段唯一可行的办法就是在学习中复习。比如说如果有同学函数没有学好,没关系,高二学习导数的时候会再回来研究函数问题:平面向量没学好,没关系,学习空间向量的进修也可以顺带复习;直线和圆没学好,没关系,圆锥曲线比圆难多了,学好圆锥曲线之后再回去看圆就轻松多了。
总之,在数学学科,如果你想超越别人,高二是最好的机会,如果你想追上别人,高二是最后的机会。我们将迎来高中整个三年中最困难,最有挑战,也是收益最大的一年。高考中数学的重要性无庸赘述,希望同学们能在高二的时候抓住机会,为了能有一个轻松的高三,也为了能有一个满意的高考而努力。
高中数学的学习方法11
一、知识特点的差异与变化
数学语言在抽象程度上突变;不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很难理解。确实,初高中的数学语言有着显著的区别。初中的数学主要是以形象、通俗的语言方式进行表达。而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。
思维方法向理性层次跃迁;高一学生产生数学学习障碍的另一个原因是高中数学思维方法与初中阶段大不相同。初中阶段,很多老师为学生将各种题建立了统一的思维模式,分别确定了各自的思维套路。因此,初中学习中习惯于这种机械的,便于操作的定势方式,而高中数学在思维形式上产生了很大的变化,正如上节所述,数学语言的抽象化对思维能力提出了更高要求。当然,能力的发展是渐进的,不是一朝一夕的事,这种能力要求的突变使很多高一新生感到不适应,故而导致成绩下降。高一新生一定要能从经验型抽象思维向理论型抽象思维过渡,最后还需初步形成辩证形思维。
知识内容剧增;初中数学知识少、浅、难度容易、知识面窄。高中数学知识广泛,是对初中的数学知识推广和引伸,也是对初中数学知识的完善。
二、学习方法与学习状态
学习习惯因依赖心理而滞后。初中生在学习上的依赖心理是很明显的第一,为提高分数,初中数学教学中教师将各种题型形成套路,学生依赖于教师为其提供套路;第二,父母盼子成材心切,回家后辅导也是常事。升入高中后,教师的教学方法变了,套路没有了,家长辅导的能力跟不上了,由“参与学习”转入“督促学习”。许多同学进入高中后,还象以前那样,跟随老师的这指挥棒运转,没有掌握学习的主动权。表现为无计划,等上课,课前不预习,对老师要上课的内容不深刻理解,课堂忙记笔记,没听到分析,不会巩固所学的知识。
思想松懈。有些同学把初中的那一套搬迁到高中来。他们认为自已在初中时并没有用功学习,只是在中考前努力了几个月就轻而易举地考上了高中,而且有的可能还是尖子班,因而认为读高中也不过如此,初始阶段根本就用不着那么用功,只要等到高考前努力几个月,也一样会考上一所理想的大学的存有这种思想的同学是大错而后特错的因为目前中考题目并不具有很明显的选拨性,同学们都很容易考得高分。但高考就不同了,目前我们国家的优秀大学还十分有限,因此高考的`题目具有很强的选拨性,如果心存侥幸,想在高三时再发奋几个月就考上大学,那到头来你会后悔莫及的同学们不妨打听打听现在的高三,有多少同学就是因为开始时不努力学习,临近高考了,发现自己缺漏了很多知识而焦急得到处请教。
学不得法。老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,还有些同学上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。
不重视基础。一些自我感觉良好的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,好高骛远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途卡壳。
进一步学习条件不具备。高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃。这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。如根分布与含参变量的讨论,空间概念的形成,二次函数值域的求法,三角公式的变形与灵活运用,排列组合应用题及实际应用问题等。有的内容还是初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,就必然会跟不上高中学习的要求。
三、明确的学习目的与科学的学习措施
高中学生仅仅想学是不够的,还必须“会学”,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。
良好的学习兴趣;古人说过:“知之者不如好之者,好之者不如乐之者。”即说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?制定计划使学习目的明确,时间安排合理,不慌不忙,稳打稳扎,它是推动我们主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。课前自学,对所学知识产生疑问,产生好奇心。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲思路,把握重点,突破难点,尽可能把问题解决在课堂上。听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。及时复习是高效率学习的重要一环。通过反复阅读教材,多方面查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比效,一边复习一边将复习成果整理在笔记本上,使对所学的新知识由“懂”到“会”。独立作业是通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程也是对我们意志毅力的考验,通过运用使我们对所学知识由“会”到“熟”。解决疑难是指对独立完成作业过程中暴露出来对知识理解的错误,或由于思维受阻遗漏解答,通过点拨使思路畅通,补遗解答的过程。解决疑难一定要有锲而不舍的精神。做错的作业再做一遍。对错误的地方没弄清楚要反复思考。实在解决不了的要请教老师和同学,并要经常把易错的地方拿来复习强化,作适当的重复性练习,把求老师问同学获得的东西消化变成自己的知识,长期坚持使对所学知识由“熟”到“活”。把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、平面坐标系的的产生都是从实际生活中抽象出来的只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。
建立良好的学习数学习惯。习惯是经过重复练习而巩固下来的稳重持久的条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。最重要的是,同学们要知道,学习是一个长期的巩固旧知、发现新知的积累过程,决非一朝一夕可以完成的为什么高中要学几年而不是几天!许多许多的同学能取得好成绩,其中一个重要原因是他们的基本功扎实,他们的阅读、书写、运算技能达到了自动化或半自动化的熟练程度。
有意识培养自己的各方面能力;数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,例如数学第二课堂、数学竞赛、智力竞赛等活动。平时注意观察,譬如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”,对习题的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,为数学能力的培养开设好各种课型,在这些课型中,学生务必全身心投入、全方位智力参与,最终达到各方面能力的全面发展与提升。
四、学好数学的基本要求
记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到能从反面入手,深入理解正确东西;能由果索因,把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。记忆数学规律和数学小结论。与同学建立好关系,争做“老师”,组成数学互助组。争做数学课外题,加大自学力度。反复巩固,消灭前学后忘。学会自主学习。
总之,阅读、观察、思维、记忆、练习等方法是相互联系、相辅相成的,缺一不可。只要我们在教学中能依据学生实际,结合教材特点及教学大纲的要求,遵循教学规律和认识规律,创造有利于指导学生形成科学学习方法的情境,就会使各个环节的指导适合学生的学习,使学生不断改进和完善自己的学习方法。只有学生想学、会学、乐学,才能把书本知识转化为自己的知识,再把理论知识转化为解决实际问题的能力,也才能大面积提高数学教学质量。并且我们应该永远牢记这样一句话:“兴趣和信心是学好数学的最好的老师!”
高中数学的学习方法12
课前预习
一个老生常谈的话题,也是提到学习方法必将的一个,话虽老,虽旧,但仍然是不得不提。虽然大家都明白该这样做,但是真正能够做到课前预习的能有几人,课前预习可以使我们提前了解将要学习的知识,不至于到课上手足无措,加深我们听课时的理解,从而能够很快的吸收新知识。
记笔记
这里主要指的是课堂笔记,因为每节课的时间有限,所以老师将的东西一般都是精华部分,因此很有必要把它们记录下来,一来可以加深我们的理解,好记性不如烂笔头吗,二来可以方便我们以后复习查看。如果对课堂讲述的知识不理解的同学更应该做笔记,以便课下细细琢磨,直到理解为止。
课后复习
同预习一样,是个老生常谈的话题,但也是行之有效的方法,课堂的几十分钟不足以使我们学习和消化所学知识,需要我们在课下进行大量的练习与巩固,才能真正掌握所学知识。
涉猎课外习题
想要在数学中有所建树,取得好成绩,光靠课本上的.知识是远远不够的,因此我们需要多多涉猎一些课外习题,学习它们的解题思路和方法,如果实在不能理解,可以问问老师或者同学。
学会归类总结
学习数学要记得东西很多,尤其是数学公式,而且知识还很散,通常解一道题需要各种公式的配合,如果单纯的记忆每个公式,不但增加记忆量,而且容易忘,此时我们必须学会归类总结,把经常搭配使用的公式等总结在一起记忆,这样会大大的减少我们的记忆量,同时提高我们做题效率。
建立纠错本
我们在学习数学的时候可能会经常因为同样一类题目而失分,自己也十分懊恼,其实有办法可以解决这个问题,就是建立纠错本,帮我们经常会出错的题目都集中在一起(当然只要是做错过得都可以记录上),然后空闲的时候看看,考试之前再看看,这样考试的时候出现同类题目再出错的几率就降低好多。
写考试总结
写考试总结是一个好习惯,考试总结可以帮我们找出学习之中不足之处,以及我们知识的薄弱环节,从而及时的弥补不足,以及以后的学习方向。
高中数学的学习方法13
综合理解,逐一突破
如何逐一突破?其实并不复杂,首要的就是高中数学的学习方法及技巧。我们利用本地高考真题卷,进行逐一突破。如数学复数运算,我们突破考点时,要联想到复数运算的基本公式,更加重要的是复数在坐标系中的意义,复数计算公式是如何产生的,其计算的数学意义是什么。简单来说,我们抓住的是,全部的'知识点考点是如何产生的,它是干什么用的。然后放在考试中怎么用上的。通过真题的形式,结合考点本身的特性,那么做其他题时,思路就非常的清晰明了。
合理利用题目信息,结合考点解题
很多同学都有这么个误区,认为高考考点完全掌握了,高考就能获得高分。其实不然。大家如果有静下心来对试卷进行思考,会发现高考完全以题为本的方法。考点仅仅是其中的一个元素,在高中数学学习中还是会要掌握技巧方法的。
高考数学考点是死的,命题是灵活多变的,但无论命题如何多变,只要掌握高中数学学习方法技巧,任何题目都一定要表述清楚,无论考我们什么考点,解题的依据不能背离试题的命题信息。故而只有抓住命题本身,用“师夷长技以制夷”的思想,结合考点,问什么答什么,用题目信息来解决问题,才是高考的取胜之道。如果依赖死板的“做过的数学题的经验”、“知识点套用”,虽然能解决一部分题,但成绩必定不会太高。大家始终记住,高考,除了考点,还有能力。
高中数学的学习方法14
高中的学习生活其实不只是要努力,正确的学习方法在学习生活中起着很大的作用。现在我就高中的学习方法给你做些介绍啊,希望对你的学习生活有所作用!我知道你数学不是很好,所以呢,我着重数学。
你们女生老是说高中数学难,其实是那么回事吗?在高考中,数学只有二十一题,选择和填空有十五题,然后再六个大题。所以在高中你只有学会这二十一题就行。
在试卷的第一题你会碰到虚数的有关内容,虚数无非是虚数有理化,实部和虚部,注意实部和虚部都是数哦!之所以这个虚放在第一题就是要你拿到那个五分,一定不要客气哦!在试卷的第二题你将会看到简单逻辑连接词的有关试题,其实这一部分的题目还是比较简单的了,只要掌握了课本上的就足够了。关于前面的两题我就不想多讲了。还有集合内容我也觉得不是高考的重点。至于统计我也就不详细的说了,我所讲的是三角函数与解三角形,函数与导数,立体几何,解析几何,数列,向量。
一:三角函数与解三角形
这个知识点考的还是比较多的,大概有17分。
1、你需要掌握正余弦,正切的图像,及其的有关图像变化。在高考中的图像题可能就是
这方面的。关于图像的上下平移,左右平移,图像的性质。三角函数是个周期函数,这在学习的过程中可能要花不少时间,其实当你不清楚的时候就画画图像,在图像上找到你所要的东西,当然你也要学会求它的周期,这些你都要熟练掌握。其实三角函数的图像无非是关于图形的变换,只要有耐心和一定的基本功,这部分的题目解决来不是什么难事!
2、三角函数的诱导公式,正余弦的和差展开式,二倍角公式,半角公式。这一部分内容
除了必要的练习还要有效的记忆。其中诱导公式是比较多的,你可以先集中记忆,然后在练习中加以巩固,达到熟练的目的。注意,你要找到这些公式的异同点找到自己的方法记忆。比如在做题的时候你看到了平方那么你的第一感觉就是看看能不能用半角公式,从半角公式形式上看它比较适合降次。多找找这样的特点有助于你记忆和应用。
3、快速有效的掌握AB形式。在高考中,这样的题型有着很大的分量。你要做的就是在
什么时候要用这种形式和又好又快的解决这类问题。这种形式我们不难发现它必须是在同角的时候才可以用,至于熟练运用就要靠你平时的努力了!
4、解三角形。这一块要熟练得掌握正余弦定理。无论是正弦还是余弦都必须知道三角形
的三个条件,注意有时我们用正弦的时候发现有两个值,那么一定要注意是不是要舍去一个啊,要经常用大角对大边的定理进行检验。
二:函数与导数
1、基本初等函数。包括一次,二次,指数,对数等函数。对于二次函数的题目我们要注
意的是四要素:开口方向,对称轴,截距,根的分布。在习题中你要时常考虑这四个因素,要寻找到题目中的隐藏条件,大多的题目至少有一个隐藏条件,找到以后你就可以化繁为简。还有,不要怕分类讨论,其实分类讨论只要部遗漏部重复就行,不用太在意那个,难的分类讨论并不是每个人都会。指数函数你要知道它的图像和性质,比如a的范围啊,单调性,值域啊。对数函数和指数函数有共同点,只要掌握了两种图像你就可以掌握他们了。还有,对于基本初等函数的基本运算你还是要多加练习的,比如指数函数和对数函数的几个运算公式你一定要熟练掌握,这是你解决复杂题目的基础。
2、导数的运用。导函数和原函数要能够区别,首先你要明确导函数是用来干嘛的',导函
数就是用来研究原函数的单调性的一种方式,不能将二者混淆。大部分的导数运用最终都会转化到二次函数上去,所以在有空的时候对二次函数要加强练习。
三:立体几何。
立体几何中最重要的就是线、面的关系。有线面的平行、垂直关系,面面的平行、垂直关系。通常在高考中考察的立体几何就是要证明线面的位置关系以及面面的位置关系。我们在解决此类的题目的时候要数练掌握定理和性质,对于定理我们比较熟悉,而对于性质的运用不是很好,所以我们要加强性质的运用。在解决较复杂的立体几何题目中你多画辅助线,也许辅助线会给你许多的益处,为你的解题提供方便之门。
四:解析几何。
解析几何在高考中的难度比较大,所以只要掌握常规方法就足够了。
1、直线与圆的位置关系,圆与圆的位置关系。这里运用的最多的就是点到直线的距离来判断他们的位置关系。
2、椭圆、双曲线、抛物线。椭圆在高考中出现的频率还是比较高的,形式以直线与椭圆
的位置为主,所以对于常规的圆锥曲线的题目你要掌握常规的解法,比如点差法和代入法啊,这些常规的方法一定要掌握。双曲线和抛物线在前面的客观题还是考的比较多。主要还是离心率考察的比较多,这就要从已知条件出发,将所给的条件划到关于ac上最常见的就是将离心率平方,找到ac的关系。
五:数列。
等差数列的通项公式、求和公式,等比数列的通项公式、求和公式要熟练运用。数列类的题目大部分要你先求通项,然后再求和。
1、你要对求通项和求和的进行分类,找到其中的方法,比如求通项的时候你就要想到利
用和式进行做差,这样就能够解决。当题目给的是递推公式的时候,那么你就要进行构造新的数列,这个新数列不是等比就是等差。在有的题目已经给出了新的构造的数列据比较简单了,只要凑下就好了。
2、在求和的时候你就要会公式发,错位相减法,倒序相加,列项相消法,分组求和等方法。
不过你要分清他们的使用范围,比如错位相减法就是解决等差数列和等比数列的组合的复杂的数列。因为求和的方法不过只有这么多,实在不行的话就一个个的试。
六:向量。
向量在高考中的分量不是很重,所以你只要掌握向量的基本运算。向量的基本运算方法分为几何法和坐标法,几何法就是利用三角形定理和平行四边形定理,这些在选择填空题中常见,另外,充分的运用三点共线原理进行解决问题很重要。坐标法运用的比较多,对于向量的坐标法的基本运算你也要好好的掌握,在几何法解决有点苦难的时候你就要想到坐标法,建系,设点坐标。
高中数学的学习方法15
一、基本知识
1.定义:
(1) .数列:按一定次序排序的一列数
(2) 等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列叫做等差数列
等比数列:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列叫做等比数列
写作素材--美句仿写
1.太阳无语,却放射出光辉;高山无语,却体现出巍峨。
蓝天无语,却显露出高远;大地无语,却展示出广博。
鲜花无语,却散发出芬芳;青春无语,却散发出活力。
2.什么样的年龄最理想?鲜花说,开放的年龄千枝竞秀。
什么样的青春最辉煌?太阳说,燃烧的青春一片光芒。
什么样的心灵最明亮?月亮说,纯洁的心灵晶莹透亮。
什么样的人生最美好?海燕说,奋斗的人生快乐无穷。
3.我梦想:来到塞外的大漠,在夕阳的金黄中感受“长河落日圆”的壮丽。
我梦想:来到海边的沙滩,从波涛的澎湃中感受“乱石穿空,惊涛拍岸,卷起千堆雪”的惊心动魄。
我梦想:来到白雪皑皑的高山,在朝阳的艳丽中,领略“红装素裹”的分外妖娆。
4.幸福是“临行密密缝,意恐迟迟归”的牵挂;
幸福是“春种一粒粟,秋收千颗子”的收获;
幸福是“采菊东篱下,悠然见南山”的闲适;
幸福是“不畏浮云遮望眼,只缘身在最高层”的追求。
5.书是我的精神食粮,它重塑了我的灵魂。
简爱说过:“我们是平等的,我不是无感情的机器”,我懂得了作为女性的自尊。
白朗宁说过:“拿走爱,世界将变成一座坟墓”,我懂得了为他人奉献爱心是多么重要。
裴多菲说过:“生命诚可贵,爱情价更高。若为自由故,二者皆可抛”,我懂得了自由的价值。
鲁迅说过:“不在沉默中爆发,就在沉默中灭亡”,我懂得了反抗精神的可贵。
每读完一本书,我就完成了一次生命的感悟。
6.幸福是贫困中相濡以沫的一块糕饼,
幸福是患难中心心相印的一个眼神;
幸福是父亲一次粗糙的抚摸,
幸福是朋友一个温馨的字条;
幸福是母亲一声温柔的叮咛,
幸福是老师一次亲切的问候。
7.爱心是冬日里的一片阳光,使饥寒交迫的人分外感到人间的温暖。
爱心是沙漠中的一泓泉水,使濒临绝境的人重新看到生活的希望。
爱心是夜空中的一轮明月,使孤苦无依的人即刻获得心灵的慰藉。
爱心是春天里的一场细雨,使心灵枯萎的人特别感到情感的滋润。
爱心是夏日里的一阵清风,使心急如焚的人感到无比的凉爽。
爱心是黑夜里的一座灯塔,使迷失方向的航船找到停靠的港湾。
8.假如生命是一株小草,我愿为春天献上一点嫩绿。
假如生命是一棵大树,我愿为大地(夏日)撒下一片绿阴(阴凉);
假如生命是一朵鲜花,我愿为世界奉上一缕馨香;
假如生命是一枚果实,我愿为人间留下一丝甘甜。
9.生命真是一个奇迹。
一枝从污泥里长出的夏荷,竟开出雪一样洁白纯净的花儿;
一粒细细黑黑的萤火虫,竟能在茫茫黑夜里发出星星般闪亮的光。
一株微不足道的小草,竟开出像海洋一样湛蓝的'花;
一只毫不起眼的鸟儿,竟能在枝头唱出远胜小提琴的夜曲;
一条柔软无骨的蚯蚓,居然能在坚实的土地里如鱼在海中似的自由遨游。
10.大自然能给我们许多启示:
滴水可以穿石,是在告诉我们做事应持之以恒;
大地能载万物,是在告诉我们求学要广读博览;
青松不惧风雪,是在告诉我们做人要坚毅刚强;
成熟的稻穗低着头,那是在启示我们要谦虚;
一群蚂蚁抬走骨头,那是在启示我们要齐心协力。
11.人们都爱秋天,爱她的天高气爽,爱她的云淡日丽,爱她的香飘四野。
人们都爱莲花,爱她的亭亭玉立,爱她的不蔓不枝,爱她的香远益清。
人们都爱春天,爱她的风和日丽,爱她的花红柳绿,爱她的雨润万物。
12.古往今来,大凡有所建树者。无不是临渊之后退而结网者。
如果哥伦布只是“临渊羡鱼”,而不去辟风斩浪,扬帆远航,他又怎么会有发现新大陆的壮举?
如果哥白尼只是“临渊羡鱼”,而不去苦心观测,创立新说,他又怎么会写出《天体运行》这部巨著?
如果只是 “临渊羡鱼”,而不去开通丝绸之路,张骞怎会有通西域那鞍前的潇洒?
如果只是“临渊羡鱼”,而不去开辟海上航线,鉴真又怎么会东海那水上风流?
【高中数学的学习方】相关文章:
高中数学的学习计划03-20
高中数学学习总结08-05
高中数学的学习方法03-28
高中数学的学习方法11-15
高中数学的学习方法12-19
高中数学学习计划03-18
高中数学学习的指导方法09-27
高中数学高效学习方法07-31
高中数学学习方法08-10
高中数学学习的正确方法09-22