高中数学重要知识点排列组合公式解析

时间:2023-09-06 22:00:07 兴亮 简单学习 我要投稿
  • 相关推荐

高中数学重要知识点排列组合公式解析

  上学期间,看到知识点,都是先收藏再说吧!知识点就是一些常考的内容,或者考试经常出题的地方。还在苦恼没有知识点总结吗?下面是小编整理的高中数学重要知识点排列组合公式解析,仅供参考,希望能够帮助到大家。

高中数学重要知识点排列组合公式解析

  排列组合公式

  排列组合公式/排列组合计算公式

  排列P------和顺序有关

  组合C-------不牵涉到顺序的问题

  排列分顺序,组合不分

  例如把5本不同的书分给3个人,有几种分法。“排列”

  把5本书分给3个人,有几种分法“组合”

  1.排列及计算公式

  从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)

  2.组合及计算公式

  从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号

  c(n,m)表示。

  c(n,m)=p(n,m)/m!=n!/((n-m)!xm!);c(n,m)=c(n,n-m);

  3.其他排列与组合公式

  从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r).

  n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为

  n!/(n1!xn2!x……xnk!).

  k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)

  排列(Pnm(n为下标,m为上标))

  Pnm=nx(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n

  组合(Cnm(n为下标,m为上标))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m

  2008-07-0813:30

  公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9x8x7x6x5x4x3x2x1

  从N倒数r个,表达式应该为nx(n-1)x(n-2).(n-r+1);

  因为从n到(n-r+1)个数为n-(n-r+1)=r

  举例:

  Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?

  A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。

  上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9x8x7个三位数。计算公式=P(3,9)=9x8x7,(从9倒数3个的乘积)

  Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?

  A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。

  上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9x8x7/3x2x1

  排列、组合的概念和公式典型例题分析

  例1设有3名学生和4个课外小组。

  (1)每名学生都只参加一个课外小组;

  (2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?

  解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。

  (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。

  点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?

  解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:

  ∴符合题意的不同排法共有9种。

  点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。

  例3判断下列问题是排列问题还是组合问题?并计算出结果。

  (1)高三年级学生会有11人:

  ①每两人互通一封信,共通了多少封信?

  ②每两人互握了一次手,共握了多少次手?

  (2)高二年级数学课外小组共10人:

  ①从中选一名正组长和一名副组长,共有多少种不同的选法?

  ②从中选2名参加省数学竞赛,有多少种不同的选法?

  (3)有2,3,5,7,11,13,17,19八个质数:

  ①从中任取两个数求它们的商可以有多少种不同的商?

  ②从中任取两个求它的积,可以得到多少个不同的积?

  (4)有8盆花:

  ①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?

  ②从中选出2盆放在教室有多少种不同的选法?

  分析(1)

  ①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;

  ②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。

  (1)①是排列问题,共用了封信;

  ②是组合问题,共需握手(次).

  (2)①是排列问题,共有(种)不同的选法;

  ②是组合问题,共有种不同的选法。

  (3)①是排列问题,共有种不同的商;

  ②是组合问题,共有种不同的积。

  (4)①是排列问题,共有种不同的选法;

  ②是组合问题,共有种不同的选法。

  例4证明。

  证明左式

  右式。

  ∴等式成立。

  点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。

  例5化简。

  解法一原式

  解法二原式

  点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化。

  例6解方程:(1);(2).

  解(1)原方程

  解得。

  (2)原方程可变为

  ∵,

  ∴原方程可化为。

  即,解得

  排列组合定义

  从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。

  排列组合公式

  A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!

  C-Combination 组合数

  A-Arrangement 排列数

  n-元素的总个数

  m-参与选择的元素个数

  i-阶乘

  排列组合基本计数原理

  加法原理与分布计数法

  1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。

  2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。

  3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。

  乘法原理与分布计数法

  1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1xm2xm3x…xmn种不同的方法。

  2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。

【高中数学重要知识点排列组合公式解析】相关文章:

高中数学知识点体积公式大全12-21

关于沙盘模拟的重要性解析11-04

高中数学数列知识点总结02-26

解析飞行员心理健康的重要性03-24

初中物理60个重要知识点总结01-18

网络技术考点解析大全知识点11-15

人教版高中数学知识点总结07-20

排列组合常用方法总结12-10

计算机二级MSOffice考试重要知识点04-06

高中数学三角函数知识点总结03-02