- 相关推荐
高中数学重要知识点排列组合公式解析
上学期间,看到知识点,都是先收藏再说吧!知识点就是一些常考的内容,或者考试经常出题的地方。还在苦恼没有知识点总结吗?下面是小编整理的高中数学重要知识点排列组合公式解析,仅供参考,希望能够帮助到大家。
排列组合公式
排列组合公式/排列组合计算公式
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法。“排列”
把5本书分给3个人,有几种分法“组合”
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示。
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1)
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号
c(n,m)表示。
c(n,m)=p(n,m)/m!=n!/((n-m)!xm!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r).
n个元素被分成k类,每类的个数分别是n1,n2,……nk这n个元素的全排列数为
n!/(n1!xn2!x……xnk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m)
排列(Pnm(n为下标,m为上标))
Pnm=nx(n-1)……(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2008-07-0813:30
公式P是指排列,从N个元素取R个进行排列。公式C是指组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9x8x7x6x5x4x3x2x1
从N倒数r个,表达式应该为nx(n-1)x(n-2).(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9x8x7个三位数。计算公式=P(3,9)=9x8x7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9x8x7/3x2x1
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组。
(1)每名学生都只参加一个课外小组;
(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加。各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法。
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法。
点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算。
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:
∴符合题意的不同排法共有9种。
点评按照分“类”的思路,本题应用了加法原理。为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型。
例3判断下列问题是排列问题还是组合问题?并计算出结果。
(1)高三年级学生会有11人:
①每两人互通一封信,共通了多少封信?
②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:
①从中选一名正组长和一名副组长,共有多少种不同的选法?
②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:
①从中任取两个数求它们的商可以有多少种不同的商?
②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:
①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?
②从中选出2盆放在教室有多少种不同的选法?
分析(1)
①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;
②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题。其他类似分析。
(1)①是排列问题,共用了封信;
②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;
②是组合问题,共有种不同的选法。
(3)①是排列问题,共有种不同的商;
②是组合问题,共有种不同的积。
(4)①是排列问题,共有种不同的选法;
②是组合问题,共有种不同的选法。
例4证明。
证明左式
右式。
∴等式成立。
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化。
例5化简。
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化。
例6解方程:(1);(2).
解(1)原方程
解得。
(2)原方程可变为
∵,
∴原方程可化为。
即,解得
排列组合定义
从n个不同元素中,任取m(m≤n,m与n均为自然数)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
排列组合公式
A(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!
C-Combination 组合数
A-Arrangement 排列数
n-元素的总个数
m-参与选择的元素个数
i-阶乘
排列组合基本计数原理
加法原理与分布计数法
1、加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
2、第一类办法的方法属于集合A1,第二类办法的方法属于集合A2,……,第n类办法的方法属于集合An,那么完成这件事的方法属于集合A1UA2U…UAn。
3、分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。
乘法原理与分布计数法
1、乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法,那么完成这件事共有N=m1xm2xm3x…xmn种不同的方法。
2、合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同。
【高中数学重要知识点排列组合公式解析】相关文章:
高中数学知识点体积公式大全12-21
关于沙盘模拟的重要性解析11-04
高中数学数列知识点总结02-26
解析飞行员心理健康的重要性03-24
初中物理60个重要知识点总结01-18
网络技术考点解析大全知识点11-15
人教版高中数学知识点总结07-20
排列组合常用方法总结12-10
计算机二级MSOffice考试重要知识点04-06
高中数学三角函数知识点总结03-02