高中数学知识点总结

时间:2023-07-20 21:40:08 秀雯 学习总结 我要投稿

人教版高中数学知识点总结

  在平时的学习中,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点有时候特指教科书上或考试的知识。哪些知识点能够真正帮助到我们呢?以下是小编帮大家整理的人教版高中数学知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

人教版高中数学知识点总结

  一次函数

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx (k为常数,k0)

  二、一次函数的性质:

  1、y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b (k为任意不为零的实数b取任何实数)

  2、当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1、作法与图形:通过如下3个步骤

  (1)列表;

  (2)描点;

  (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点)

  2、性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(—b/k,0)正比例函数的图像总是过原点。

  3、k,b与函数图像所在象限:

  当k0时,直线必通过一、三象限,y随x的增大而增大;

  当k0时,直线必通过二、四象限,y随x的增大而减小。

  当b0时,直线必通过一、二象限;

  当b=0时,直线通过原点

  当b0时,直线必通过三、四象限。

  特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

  这时,当k0时,直线只通过一、三象限;当k0时,直线只通过二、四象限。

  四、确定一次函数的表达式:

  已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

  (1)设一次函数的表达式(也叫解析式)为y=kx+b。

  (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b ①和y2=kx2+b ②

  (3)解这个二元一次方程,得到k,b的值。

  (4)最后得到一次函数的表达式。

  五、一次函数在生活中的应用:

  1、当时间t一定,距离s是速度v的一次函数。s=vt。

  2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S—ft。

  六、常用公式:(不全,希望有人补充)

  1、求函数图像的k值:(y1—y2)/(x1—x2)

  2、求与x轴平行线段的中点:|x1—x2|/2

  3、求与y轴平行线段的中点:|y1—y2|/2

  4、求任意线段的长:(x1—x2)^2+(y1—y2)^2 (注:根号下(x1—x2)与(y1—y2)的平方和)

  二次函数

  I、定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:

  y=ax^2+bx+c

  (a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大、)

  则称y为x的二次函数。

  二次函数表达式的右边通常为二次三项式。

  II、二次函数的三种表达式

  一般式:y=ax^2+bx+c(a,b,c为常数,a0)

  顶点式:y=a(x—h)^2+k [抛物线的顶点P(h,k)]

  交点式:y=a(x—x)(x—x ) [仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]

  注:在3种形式的互相转化中,有如下关系:

  h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a

  III、二次函数的图像

  在平面直角坐标系中作出二次函数y=x^2的图像,

  可以看出,二次函数的图像是一条抛物线。

  IV、抛物线的性质

  1、抛物线是轴对称图形。对称轴为直线

  x= —b/2a。

  对称轴与抛物线唯一的交点为抛物线的顶点P。

  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

  2、抛物线有一个顶点P,坐标为

  P( —b/2a,(4ac—b^2)/4a )

  当—b/2a=0时,P在y轴上;当= b^2—4ac=0时,P在x轴上。

  3、二次项系数a决定抛物线的开口方向和大小。

  当a0时,抛物线向上开口;当a0时,抛物线向下开口。

  |a|越大,则抛物线的开口越小。

  4、一次项系数b和二次项系数a共同决定对称轴的位置。

  当a与b同号时(即ab0),对称轴在y轴左;

  当a与b异号时(即ab0),对称轴在y轴右。

  5、常数项c决定抛物线与y轴交点。

  抛物线与y轴交于(0,c)

  6、抛物线与x轴交点个数

  = b^2—4ac0时,抛物线与x轴有2个交点。

  = b^2—4ac=0时,抛物线与x轴有1个交点。

  = b^2—4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= —bb^2—4ac的值的相反数,乘上虚数i,整个式子除以2a)

  V、二次函数与一元二次方程

  特别地,二次函数(以下称函数)y=ax^2+bx+c,

  当y=0时,二次函数为关于x的一元二次方程(以下称方程),

  即ax^2+bx+c=0

  此时,函数图像与x轴有无交点即方程有无实数根。

  函数与x轴交点的横坐标即为方程的根。

  1、二次函数y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:

  解析式顶点坐标对称轴

  y=ax^2(0,0) x=0

  y=a(x—h)^2(h,0) x=h

  y=a(x—h)^2+k(h,k) x=h

  y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a

  当h0时,y=a(x—h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

  当h0时,则向左平行移动|h|个单位得到、

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x—h)^2+k的图象;

  当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x—h)^2+k的图象;

  因此,研究抛物线y=ax^2+bx+c(a0)的图象,通过配方,将一般式化为y=a(x—h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了、这给画图象提供了方便、

  2、抛物线y=ax^2+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=—b/2a,顶点坐标是(—b/2a,[4ac—b^2]/4a)、

  3、抛物线y=ax^2+bx+c(a0),若a0,当x —b/2a时,y随x的增大而减小;当x —b/2a时,y随x的增大而增大、若a0,当x —b/2a时,y随x的增大而增大;当x —b/2a时,y随x的增大而减小、

  4、抛物线y=ax^2+bx+c的图象与坐标轴的交点:

  (1)图象与y轴一定相交,交点坐标为(0,c);

  (2)当△=b^2—4ac0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=

  (a0)的两根、这两点间的距离AB=|x—x|

  当△=0、图象与x轴只有一个交点;

  当△0、图象与x轴没有交点、当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0、

  5、抛物线y=ax^2+bx+c的最值:如果a0(a0),则当x= —b/2a时,y最小(大)值=(4ac—b^2)/4a、

  顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值、

  6、用待定系数法求二次函数的解析式

  (1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:

  y=ax^2+bx+c(a0)、

  (2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x—h)^2+k(a0)、

  (3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x—x)(x—x)(a0)、

  7、二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现、

  反比例函数

  形如y=k/x(k为常数且k0)的函数,叫做反比例函数。

  自变量x的取值范围是不等于0的一切实数。

  反比例函数图像性质:

  反比例函数的图像为双曲线。

  由于反比例函数属于奇函数,有f(—x)=—f(x),图像关于原点对称。

  另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

  如图,上面给出了k分别为正和负(2和—2)时的函数图像。

  当K0时,反比例函数图像经过一,三象限,是减函数

  当K0时,反比例函数图像经过二,四象限,是增函数

  反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

  知识点:

  1、过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

  2、对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

  平面的基本性质与推论

  1、平面的基本性质:

  公理1如果一条直线的两点在一个平面内,那么这条直线在这个平面内;

  公理2过不在一条直线上的三点,有且只有一个平面;

  公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

  2、空间点、直线、平面之间的位置关系:

  直线与直线—平行、相交、异面;

  直线与平面—平行、相交、直线属于该平面(线在面内,最易忽视);

  平面与平面—平行、相交。

  3、异面直线:

  平面外一点A与平面一点B的连线和平面内不经过点B的直线是异面直线(判定);

  所成的角范围(0,90)度(平移法,作平行线相交得到夹角或其补角);

  两条直线不是异面直线,则两条直线平行或相交(反证);

  异面直线不同在任何一个平面内。

  求异面直线所成的角:平移法,把异面问题转化为相交直线的夹角

  空间中的平行关系

  1、直线与平面平行(核心)

  定义:直线和平面没有公共点

  判定:不在一个平面内的一条直线和平面内的一条直线平行,则该直线平行于此平面(由线线平行得出)

  性质:一条直线和一个平面平行,经过这条直线的平面和这个平面相交,则这条直线就和两平面的交线平行

  2、平面与平面平行

  定义:两个平面没有公共点

  判定:一个平面内有两条相交直线平行于另一个平面,则这两个平面平行

  性质:两个平面平行,则其中一个平面内的直线平行于另一个平面;如果两个平行平面同时与第三个平面相交,那么它们的交线平行。

  3、常利用三角形中位线、平行四边形对边、已知直线作一平面找其交线

  空间中的垂直关系

  1、直线与平面垂直

  定义:直线与平面内任意一条直线都垂直

  判定:如果一条直线与一个平面内的两条相交的直线都垂直,则该直线与此平面垂直

  性质:垂直于同一直线的两平面平行

  推论:如果在两条平行直线中,有一条垂直于一个平面,那么另一条也垂直于这个平面

  直线和平面所成的角:【0,90】度,平面内的一条斜线和它在平面内的射影说成的锐角,特别规定垂直90度,在平面内或者平行0度

  2、平面与平面垂直

  定义:两个平面所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线所成的角)

  判定:一个平面过另一个平面的垂线,则这两个平面垂直

  性质:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直

【高中数学知识点总结】相关文章:

高中数学数列知识点总结02-26

高中数学三角函数知识点总结03-02

高中数学知识点体积公式大全12-21

高中数学知识点二项式定理12-31

高中数学月考总结04-11

高中数学月考总结10-29

Java知识点总结04-06

椭圆的知识点总结04-12

整式知识点总结10-24

高中数学教研活动总结09-04