双曲线知识点总结

时间:2022-11-17 12:18:05 学习总结 我要投稿

双曲线知识点总结

  双曲线在高中数学中是一大考点,那么双曲线知识点又有什么重点呢?下面双曲线知识点总结是小编为大家带来的,希望对大家有所帮助。

双曲线知识点总结

  双曲线知识点总结 篇1

  课内重视听讲,课后及时复习。

  新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,应尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

  适当多做题,养成良好的解题习惯。

  要想学好数学,多做题是难免的,熟悉掌握各种题型的解题思路。刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

  调整心态,正确对待考试。

  首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

  双曲线知识点总结 篇2

  双曲线方程

  1. 双曲线的第一定义:

  ⑴①双曲线标准方程:. 一般方程:.

  ⑵①i. 焦点在x轴上:

  顶点: 焦点: 准线方程 渐近线方程:或

  ii. 焦点在轴上:顶点:. 焦点:. 准线方程:. 渐近线方程:或,参数方程:或 .

  ②轴为对称轴,实轴长为2a, 虚轴长为2b,焦距2c. ③离心率. ④准线距(两准线的距离);通径. ⑤参数关系. ⑥焦点半径公式:对于双曲线方程(分别为双曲线的左、右焦点或分别为双曲线的上下焦点)

  长加短减原则:

  构成满足(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

  ⑶等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率.

  ⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:.

  ⑸共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为.

  例如:若双曲线一条渐近线为且过,求双曲线的方程?

  解:令双曲线的方程为:,代入得.

  ⑹直线与双曲线的位置关系:

  区域①:无切线,2条与渐近线平行的直线,合计2条;

  区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;

  区域③:2条切线,2条与渐近线平行的直线,合计4条;

  区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;

  区域⑤:即过原点,无切线,无与渐近线平行的直线.

  小结:过定点作直线与双曲线有且仅有一个交点,可以作出的`直线数目可能有0、2、3、4条.

  (2)若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入法与渐近线求交和两根之和与两根之积同号.

  ⑺若P在双曲线,则常用结论1:P到焦点的距离为m = n,则P到两准线的距离比为m?n.

  简证: =.

  常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b.

  双曲线知识点总结 篇3

  1、向量的加法

  向量的加法满足平行四边形法则和三角形法则。

  AB+BC=AC。

  a+b=(x+x',y+y')。

  a+0=0+a=a。

  向量加法的运算律:

  交换律:a+b=b+a;

  结合律:(a+b)+c=a+(b+c)。

  2、向量的减法

  如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

  AB-AC=CB. 即“共同起点,指向被减”

  a=(x,y) b=(x',y') 则 a-b=(x-x',y-y').

  3、数乘向量

  实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。

  当λ>0时,λa与a同方向;

  当λ<0时,λa与a反方向;

  当λ=0时,λa=0,方向任意。

  当a=0时,对于任意实数λ,都有λa=0。

  注:按定义知,如果λa=0,那么λ=0或a=0。

  实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

  当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

  当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

  数与向量的乘法满足下面的运算律

  结合律:(λa)·b=λ(a·b)=(a·λb)。

  向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

  数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

  数乘向量的消去律:

  ① 如果实数λ≠0且λa=λb,那么a=b。

  ② 如果a≠0且λa=μa,那么λ=μ。

  4、向量的的数量积

  定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。

  定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。

  向量的数量积的坐标表示:a·b=x·x'+y·y'。

  向量的数量积的运算率

  a·b=b·a(交换率);

  (a+b)·c=a·c+b·c(分配率);

  向量的数量积的性质

  a·a=|a|的平方。

  a⊥b 〈=〉a·b=0。

  |a·b|≤|a|·|b|。

【双曲线知识点总结】相关文章:

ps双曲线磨皮法教程11-21

双曲线螺杆的设计分析及应用09-29

PHOTOSHOP智能双曲线快速磨皮详细教程11-24

双曲线及其几何性质的技巧分析教育论文08-13

语文知识点总结11-06

熟语知识点总结11-06

物理知识点总结11-27

电路知识点总结07-22

Java知识点总结12-08