椭圆的知识点总结
在我们上学期间,大家最不陌生的就是知识点吧!知识点就是一些常考的内容,或者考试经常出题的地方。还在苦恼没有知识点总结吗?下面是小编收集整理的椭圆的知识点总结,欢迎阅读,希望大家能够喜欢。
椭圆的标准方程
椭圆的标准方程有两种,取决于焦点所在的坐标轴:
1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1 (a>b>0)
2)焦点在Y轴时,标准方程为:y^2/a^2+x^2/b^2=1 (a>b>0)
其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即
标准方程的统一形式。
椭圆的'面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ
标准形式的椭圆在(x0,y0)点的切线就是 :xx0/a^2+yy0/b^2=1。
椭圆切线的斜率是:-b^2x0/a^2y0,这个可以通过很复杂的代数计算得到。
椭圆的一般方程
Ax^2+By^2+Cx+Dy+E=0(A>0,B>0,且A≠B)。
椭圆的参数方程
x=acosθ , y=bsinθ。
椭圆的极坐标方程
(一个焦点在极坐标系原点,另一个在θ=0的正方向上)
r=a(1-e^2)/(1-ecosθ)
(e为椭圆的离心率=c/a)
有关公式椭圆的面积公式
S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)。
或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。
椭圆的周长公式
椭圆周长没有公式,有积分式或无限项展开式。
知识要领总结:椭圆的标准方程有两种,取决于焦点所在的坐标轴。
初中数学知识点总结:平面直角坐标系
下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系
平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
初中数学知识点:平面直角坐标系的构成
对于平面直角坐标系的构成内容,下面我们一起来学习哦。
平面直角坐标系的构成
在同一个平面上互相垂直且有公共原点的`两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。
通过上面对平面直角坐标系的构成知识的讲解学习,希望同学们对上面的内容都能很好的掌握,同学们认真学习吧。
初中数学知识点:点的坐标的性质
下面是对数学中点的坐标的性质知识学习,同学们认真看看哦。
点的坐标的性质
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
【椭圆的知识点总结】相关文章:
CAD椭圆和椭圆弧的绘制方法08-11
CAD椭圆如何画08-12
数学手抄报资料:圆与椭圆11-19
椭圆曲线加密算法对卫星通信的应用论文11-24
色彩知识点总结09-30
政治会考知识点总结02-24
外科常用知识点总结10-17
JavaScript提高性能的知识点总结10-27
SAT语法高频知识点总结11-21
考研数学必备知识点总结01-18