数学建模优秀论文

论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。

数学建模优秀论文1

  1. 问题重述:(略)

  2. 问题背景:

  交待问题背景,说明处理此问题的意义和必要性。

  优点:叙述详尽,条理清楚,论证充分

  缺点:前两段过于冗长,可作适当删节

  3. 问题分析:

  进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

  优点:条理比较清晰,论述符合逻辑,表达清楚

  缺点:似乎不够详细,尤其是第三段有些过于概括。

  4. 模型的假设与约定:

  共有8条比较合理的假设

  优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

  缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

  5. 符号说明及名词定义

  优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

  缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

  6. 模型建立与求解

  6.1问题一:

  对所给数据惊醒处理和统计,得出规律,找到联系。

  优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

  6.2问题二:

  6.2.1最短路的确定

  为确定最短路径又提出了一系列假设并阐述了理由,在这些假设下规定了最短路径

  优点:假设有根据,理由合情合理

  缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失一般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费一次。

  6.2.2计算人流量的追踪模型

  给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。

  优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。

  缺点:分析还不够详细,考虑因素还不够周到。

  6.3问题三

  进一步对问题作以简化,将问题的解决最终归结为一个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。

  6.3.1商区消费额的确定

  阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。

  优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。

  缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值

  6.3.2各个商区MS数量的概略确定

  确定了确定MS个数的方案,在不失一般性的前提下对问题进行进一步简化,缩小解决问题的范围并对问题进行了求解

  优点:简洁明了,论述合理。

  6.3.3

  引入了一个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。

  优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。

  6.3.4LMS和MS的分配情况讨论

  对二者关系提出了几条假设。

  优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。

  6.4问题四

  分析了方法的科学性和结果的贴近实际性

  优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。

  缺点:结果的贴近实际性的论证中,应详细罗列一下数据的来源,也许更加可信。

  7. 模型的进一步讨论

  为简化抽象现实一边建构模型而忽略掉的一些因素进行了考虑,对于一些可能影响讨论结果的因素给出了算法和解决方案

  优点:考虑全面,善于抓住主要矛盾,表述简明客观。

  8. 模型检验

  与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。

  优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。

  缺点:应该简述一下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。

  9. 模型优缺点

  总结模型建立并解决问题的过程中的优点和缺点

  优点:简明扼要,客观实在

  10. 附录(略)

  参考文献

数学建模优秀论文2

  一、数学建模教学现状分析

  在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。

  二、数学建模教学的改革举措

  1.加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。

  三、收获与体会

  从20xx年开始,我们在数学建模选修课教学中进行了实践,取得了良好效果,有如下收获和体会:

  数学建模课堂教学面貌换然一新。任务驱动、互动式、研讨式等教学法的综合运用,改变了以往“教师讲,学生听”,学生被动的教学模式,转变为学生主动参与、自主协作、积极探索的新型学习模式,践行了“教师为主导、学生为主体”教育精神;通过教师引导学生进行研究学习,让学生亲历知识产生与形成的过程,学会独立运用其所学的数学知识解决实际问题,从而实现知识发现与重构,激发学生的学习潜能和学习兴趣,培养了学生的学习能力和应用能力,使课堂充满活力。2.树立了学生学好数学建模的自信心。由于教法得当,优化了教学内容,加入了数学软件的学习,使学生成为了学习的主人,不再是知识的被动接受者,而是通过亲身实践、主动探索去学习发现知识,从中体验到了成功的喜悦,克服困难的乐趣;降低了学习的难度,渐进的内容安排,使学生不再觉得数学建模难以学习;而且内容贴近生活实际,使学生不再认为数学无用武之地,变要我学为我要学。

  3.教师要善于组织、指导、监控。教师组织安排教学内容时,必须要对教学内容要有透彻的理解,教学设计要有较强针对性,切实可行,要使学生通过完成任务,实现教学目标、达到教学目的;在学生自主协作学习过程中,教师要注意监控学生的学习进程,了解学生学习过程中碰到有哪些困难,给予学生适当的指导或组织学生攻坚克难。

数学建模优秀论文3

  各位老师,下午好! 我叫XXX,是20xx级**班的学生,我的论文题目是《数学建模教学培养高中生创造性思维能力的实验研究》,论文是在钟育彬导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。

  首先,我想谈谈这个毕业论文设计的目的及意义。

  在数学教学中培养学生的创造性思维能力是必要的和必需的。如何在数学教学中培养学生的创造性思维能力,是数学教育的重大课题。培养与训练学生的创造性思维能力并不是高不可攀的,而是能够在数学教学中脚踏实地做好的。数学教学中培养学生的创造性思维能力可以让学生凭借数学专业领域的知识经验,不断深化与发展,逐渐有量变到质变,向较深层次跳跃,以便为以后的发展打好基础。

  数学建模法是研究数学的基本方法之一,数学模型的建构自身就是一个创新的过程,进行数学建模教学不仅能够使学生构建数学知识基础,更是让学生进行创造性思维培养的重要途径和手段,是培养学生创造性思维能力的重要方法,对学生形成数学素养具有重要作用。

  数学建模成为培养学生创造性思维能力的有效途径之一。事实上,我国的一些教育工作者在这一领域已经做了初步的研究工作,但是这些研究大多局限于理论的探讨,而对于数学建模与创造性思维能力的关系,特别是如何通过数学建模教学培养高中生的创造性思维能力方面的研究还很少,并且大都不够深入,不够系统,研究结论缺少实证研究的有力支持。

  本文尝试开展实验研究去探讨数学建模与高中生创造性思维能力之间的关系,并做出假设:数学建模教学有利于培养高中生的创造性思维能力。本文通过验证假设目的是证明数学建模教学培养高中生创造性思维能力的有效性,从而给广大高中数学教师一定的教学启示,推动他们积极开展数学建模教学,培养学生的创造性思维能力,为加快培养创造性人才做出贡献。

  其次,我想谈谈这篇论文的结构和主要内容。

  基于以上问题和现状,本文尝试开展实验研究去探讨数学建模与高中生创造性思维能力之间的关系,并做出假设:数学建模教学有利于培养高中生的创造性思维能力。

  首先,本文介绍了研究背景,研究目的和意义,其次,综述了关于创造性思维能力和数学建模的理论基础,探讨了数学建模教学培养高中生创造性思维能力的教学思路,接着进一步开展了为期十六周的实验研究。在一所普通高中的二年级中选择两个平行班作为实验班和控制班。作者在实验班开展数学建模教学,而在控制班仍然实施传统数学教学。教学实验前对学生的数学建模能力和创造性思维能力测试,确保两个班无明显差异。实验后对学生的数学建模能力和创造性思维能力测试,开展数据分析并对结果进行分析与讨论,研究证明了实验班学生的创造性思维能力有了明显的提高。研究表明,数学建模教学有利于培养高中学生的创造性思维能力。最后,指出了本研究的主要结论,提供了关于数学建模培养高中生创造性思维能力的一些教学启示,同时对于本研究的局限性做了一一说明。

  最后,我想谈谈这篇论文存在的不足。

  这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进。请各位评委老师多批评指正,让我在今后的学习中学到更多。

  谢谢!

数学建模优秀论文(通用10篇)

标签:数学毕业论文 时间:2022-08-02
【yjbys.com - 数学毕业论文】

  在日复一日的学习、工作生活中,说到论文,大家肯定都不陌生吧,借助论文可以有效提高我们的写作水平。你知道论文怎样写才规范吗?以下是小编精心整理的数学建模优秀论文,仅供参考,大家一起来看看吧。

  数学建模优秀论文 篇1

  【摘要】首先阐述数学建模内涵;其次分析数学建模与数学教学的关系;最后总结出提高数学教学效果的几点思考。

  【关键词】数学建模;数学教学;教学模式

  什么是数学建模,为什么要把数学建模的思想运用到数学课堂教学中去?经过反复阅读有关数学建模与数学教学的文章,仔细研修数十个高校的数学建模精品课程,数学建模优秀教学案例等,笔者对数学教学与数学建模进行初步探索,形成一定认识。

  一、数学建模

  数学建模即运用数学知识与数学思想,通过对实际问题数学化,建立数学模型,并运用计算机计算出结果,对实际问题给出合理解决方案、建议等。系统的谈数学建模需从以下三个方面谈起。

  1.数学建模课程。

  “数学建模”课程特色鲜明,以综合门类为基础,重实践,重应用。旨在使学生打好数学基础,增强应用数学意识,提高实践能力,建立数学模型解决实际问题。注重培养学生参与现代科研活动主动性与参与工程技术开发兴趣,注重培养学生创新思维及创新能力等相关素质。

  2.数学建模竞赛。

  1985年,美国工业与应用数学学会发起的一项大学生竞赛活动名为“数学建模竞赛”。旨在提高学生学习数学主动性,提高学生运用计算机技术与数学知识和数学思想解决实际问题综合能力。学生参与这项活动可以拓宽知识面,培养自己团队意识与创新精神。同时这项活动推动了数学教师与数学教学专家对数学体系、教学方式与教学知识重新认识。1992年,教育部高教司和中国工业与数学学会创办了“全国大学生数学建模竞赛”。截止20xx年10月已举办有21届。大力推进了我国高校数学教学改革进程。

数学建模A优秀论文

标签:数学毕业论文 时间:2022-08-01
【yjbys.com - 数学毕业论文】

  在现实的学习、工作中,大家总免不了要接触或使用论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。一篇什么样的论文才能称为优秀论文呢?以下是小编精心整理的数学建模A优秀论文,仅供参考,大家一起来看看吧。

  数学建模A优秀论文 篇1

  论文关键词:数学建模数学应用意识数学建模教学

  论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

  数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。

  目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

高职院校数学建模教学优秀论文

标签:数学毕业论文 时间:2021-04-16
【yjbys.com - 数学毕业论文】

  一、数学建模教学现状分析

  在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。

  二、数学建模教学的改革举措

  1.加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的.学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。

关于数学建模优秀论文

标签:数学毕业论文 时间:2020-12-01
【yjbys.com - 数学毕业论文】

  1. 问题重述:(略)

  2. 问题背景:

  交待问题背景,说明处理此问题的意义和必要性。

  优点:叙述详尽,条理清楚,论证充分

  缺点:前两段过于冗长,可作适当删节

  3. 问题分析:

  进一步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

  优点:条理比较清晰,论述符合逻辑,表达清楚

  缺点:似乎不够详细,尤其是第三段有些过于概括。

  4. 模型的假设与约定:

  共有8条比较合理的假设

  优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

  缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失一般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

  5. 符号说明及名词定义

  优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

  缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

  6. 模型建立与求解

  6.1问题一:

  对所给数据惊醒处理和统计,得出规律,找到联系。

  优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的'变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。